Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: John Warner x
Clear All Modify Search
Author:

`Sturdeespur Delicious', `MacSpur`, `Summerland McIntosh', `Idared', and `Empire' apple trees (Malus domestics Borkh.) planted in 1986 on various size-controlling rootstock were used to determine the effect of rootstock on primary scaffold branch crotch angle. There were differences in crotch angle depending on rootstock. Rootstock effects were more pronounced with the upright growing `Sturdeespur Delicious' than with `Idared' and `Empire', which have a spreading growth habit. Ottawa 8 rootstock had a tendency to produce primary branches with wider crotch angles than other semidwarf to standard rootstock.

Free access

One-time spray applications [about 6 mL (0.2 fl oz)] of chlormequat chloride [1000 or 2000 mg·L-1 (ppm)], daminozide (2500 or 5000 mg·L-1), paclobutrazol (20 or 40 mg·L-1) and uniconazole (5 or 10 mg·L-1) varied in efficacy in reducing Hibiscus coccineus (Medic.) Walt., H. radiatus Cav., and H. trionum L. (flower-of-an-hour) stem elongation. Chlormequat chloride inhibited stem elongation of all species, with a 2000 mg·L-1 application reducing stem length of H. coccineus, H. radiatus, and H. trionum by 87%, 42%, and 52%, respectively, compared to untreated plants, 28 d after application. Paclobutrazol also inhibited stem elongation of all species. Uniconazole reduced stem elongation of H. coccineus and H. radiatus, but not H. trionum. Daminozide applied at 5000 mg·L-1 reduced H. radiatus stem elongation only. Growth retardants examined in this study did not delay flowering of H. trionum, the only species that flowered during the experiment. (Chemical names used: ancymidol (α-cyclopropyl-α-(4-methoxyphenol)-5-pyrimidinemethonol), chlormequat chloride(2-chloroethyltrimethylammonium chloride), paclobutrazol ((+)-(R*,R*)-beta((4-chlorophenyl)methyl)-alpha-(1,1-dimethyl)-1H-1,2,4-triazol-1-ethanol), daminozide ([butanedioic acid mono(2,2-dimethylhydrazide)], uniconazol-P ((E)-(+)-(s)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-ene-3-ol)).

Full access

Thirty-six Hibiscus L. species were grown for 20 weeks under three lighting treatments at 15, 20, or 25 ± 1.5 °C air temperature to identify flowering requirements for each species. In addition, species were subjectively evaluated to identify those species with potential ornamental significance based on flower characteristics and plant form. Lighting treatments were 9 hour ambient light (St. Paul, Minn., November to May, 45 °N), ambient light plus a night interruption using incandescent lamps (2 μmol·m-2·s-1; 2200 to 0200 hr), or ambient light plus 24-hour supplemental lighting from high-pressure sodium lamps (100 μmol·m-2·s-1). Five day-neutral, six obligate short-day, six facultative short-day, three obligate long-day, and one facultative long-day species were identified. Fifteen species did not flower. Temperature and lighting treatments interacted to affect leaf number below the first flower and/or flower diameter on some species. Hibiscus acetosella Welw. ex Hiern, H. cisplatinus St.-Hil., H. radiatus Cav., and H. trionum L. were selected as potential new commercially significant ornamental species.

Free access

Flowering of many herbaceous ornamentals is reduced or eliminated under high temperatures. On warm, sunny days, greenhouse growers often cover crops with light-reducing screening materials to reduce air and plant temperature. However, low irradiance can also reduce flowering on many species. To examine the impacts of temperature and irradiance on herbaceous ornamental flowering and to select a model to study high temperature-reduced flowering, Antirrhinum majus L. (snapdragon) `Rocket Rose', Calendula officinalis L. (calendula) `Calypso Orange', Impatiens wallerana Hook.f. (impatiens) `Super Elfin White', Mimulus ×hybridus Hort. ex Siebert & Voss (mimulus) `Mystic Yellow', and Torenia fournieri Linden ex E. Fourn (torenia) `Clown Burgundy' were grown at constant 32 ± 1 °C or 20 ± 1.5 °C under a 16-hour photoperiod with daily light integrals (DLI) of 10.5, 17.5, or 21.8 mol·m-2·d-1. Flower bud number per plant (all flower buds ≥1 mm in length when the first flower opened) of all species was lower at 32 than 20 °C. Reduction in flower bud number per plant at 32 compared to 20 °C varied from 30% (impatiens) to 95% (torenia) under a DLI of 10.5 mol·m-2·d-1. Flower diameter of all species except snapdragon was less at 32 than 20 °C. Decreasing DLI from 21.8 to 10.5 mol·m-2·d-1 decreased flower diameter of all species except snapdragon. Calendula, impatiens, and torenia leaf number below the first flower was greater at 32 than 20 °C, regardless of DLI. Increasing DLI from 10.5 to 17.5 mol·m-2·d-1 increased shoot dry mass gain rate of all species, regardless of temperature. Further increasing DLI from 17.5 to 21.8 mol·m-2·d-1 at 20 °C increased shoot dry mass gain rate of all species except snapdragon and mimulus, indicating that these species may be light saturated below 21.8 mol·m-2·d-1. Under DLIs of 17.5 and 21.8 mol·m-2·d-1 shoot dry mass gain rate was lower at 32 than 20 °C for all species except torenia. Torenia shoot dry mass gain rate was 129 mg·d-1 at 20 °C compared to 252 mg·d-1 at 32 °C under a DLI of 17.5 mol·m-2·d-1. We suggest torenia may be a good model to study the basis for inhibition of flowering under high temperatures as flowering, but not dry mass gain, was reduced at 32 °C.

Free access

Based on protocols developed by the Plant Genetic Resources Unit (PGRU), Geneva, NY and the National Seed Storage Laboratory, Fort Collins, Colo., nearly 40% of the 2500-accession USDA–ARS Malus germplasm collection has been preserved cryogenically. Recent program changes require the entire Canadian Malus collection of 700 accessions at the Canadian Clonal Genebank, Trenton, Ont., be moved to a new location in Harrow, Ont., by the end of 1996. This provided an opportunity to utilize cryogenic storage during repropagation and reestablishment to develop a security backup for the collection. In a cooperative experiment, dormant buds of four Canadian Malus accessions were collected in Trenton and cryopreserved in Geneva in February 1995. Field-level moisture of dormant buds ranged from 45% to 50%. Three levels of bud desiccation were tested: 25%, 30% (current standard), and 35%. The desiccated buds were containerized and slowly frozen to –30°C, plunged into liquid nitrogen, and held for one month at Geneva prior to recovery testing by bud-grafting at Geneva and Trenton. Results were identical at both sites. We obtained 60% recovery at 30% and 35% moisture levels and 80% recovery at 25% moisture across all four accessions. Further studies on a broader range of germplasm will determine if desiccation to the 25% level is superior to the 30% level. Meanwhile, we have initiated a cooperative project to cryopreserve 350 accessions unique to the Canadian collection at Ft. Collins.

Free access

Nine chinese cabbage (Brassica campestris ssp. pekinensis group var. cephalata) cultivars were evaluated for petiole spotting (gomasho) and bacterial soft rot (caused by Erwinia carotovora ssp. carotovora) in 1999 and fifteen in 2000 and 2001. The cultivars were arranged in a randomized complete block design in a Granby sandy loam soil with six replications in 1999 and three replications in 2000 and 2001, at the Greenhouse and Processing Crops Research Centre, Harrow, Ontario, Canada. Plants were harvested in the fall of each year during two harvest periods, one for early-maturing cultivars, and one for late-maturing cultivars. At harvest, the percent bacterial soft rot, percent marketable heads, plant size, uniformity of harvest maturity, and the mean head weight were determined for each cultivar. The number and weight of spotted leaves was determined by rating (0 to 5 scale) each leaf. Petiole spotting was also rated following storage at 2 °C (36 °F) and 89% ± 5% relative humidiyt for 3 to 4 weeks in 1999 and 2000. `Yuki', `Manoko', and `Summer Top' had lowest losses from bacterial soft rot while `Akala', `Ohken 75', `Spring Flavor', and `Yuki' had low levels of petiole spotting. Cold storage increased the incidence of the spotting disorder for most cultivars.

Full access

With growing interest in food system solutions to address poor health outcomes related to preventable chronic diseases, organizations and researchers are examining the value of community gardens as interventions to promote individual and community health. Research suggests that participation in community gardens improves access to fresh, healthy foods and increases fruit and vegetable consumption. In addition to these physical benefits, research also documents a variety of social and communal benefits, by expanding social capital, stabilizing neighborhoods, and cultivating relationships. Unfortunately, most of these studies focus on a specific case, cross case, or intervention studies within a geographically specific locale. Learning lessons from successful community garden programs can be difficult because community gardens often rely on the synergy of a complex network of support agencies that assist in various technical and educational capacities. The purpose of the study was to demonstrate the use of a framework for program development and evaluation that stakeholders, including extension, can adopt to show program outcomes. The framework used a Delphi approach with a diverse panel of community garden stakeholders to reach consensus about program outcomes. The study demonstrated that the panel could reach consensus on a variety of short-, medium-, and long-term outcomes.

Full access