Search Results

You are looking at 1 - 10 of 25 items for

  • Author or Editor: John Smagula x
Clear All Modify Search

In a commercial lowbush blueberry (Vaccinium angustifolium Ait.) field with low leaf Cu (<7 ppm) and Fe (<50 ppm) concentrations, nine 1.8 m × 15 m treatment plots were established in a randomized complete block design with 6 blocks. Copper Keylate® (Stoller Enterprises, Inc.) containing 5% Cu was used as a foliar spray in a volume of 626 L·ha-1. In a similar volume, the Stoller Enterprises Inc. product Fe Keylate®, containing 5% Fe (5% chelated Iron), was used to provide Fe. Ammonium sulfate (0.7%) was added to the solutions to enhance uptake. Treatment plots received either Cu Keylate® at 0.6 kg·ha-1 Cu or Fe Keylate® at 0.6 kg·ha-1 or a combination of both nutrients in one spray. Treatments included a 19 June prune - or crop-year application of Cu, Fe, or Cu + Fe, and a prune-year Cu + Fe June 7 and June 19. A plot receiving no treatment served as a control. Leaf Cu and Fe concentrations were raised to above satisfactory leaf concentrations (Cu >7 ppm, Fe >50 ppm) by their respective treatments. Concentrations were significantly higher for each element when they were applied together. Two applications were not better than only one. No carry-over effect was seen in the crop year. Crop-year applications of Cu and Fe were effective in raising their respective concentrations. Stem density, length, number of branches or branch length was not affected by treatments at the end of the prune year. Flower bud density and average number of flower buds per stem were not meaningfully affected by prune year Cu or Fe treatments. Berry yield was not influenced by any treatment suggesting that the Cu and Fe standards are too high.

Free access
Author:

Concentrations of nutrient elements in randomly selected soil samples taken at a 3-inch depth or the depth of the surface organic pad correlated poorly (R2= < 0.34) with leaf nutrient concentrations randomly selected from the same fields. Average leaf N concentrations in 74 of 79 fields sampled were above the 1.6% standard, while leaf P was below the 0.125% standard in 62 of the 79 fields. Leaf K, Ca, and Mg concentrations were above the standards 0.400%, 0.270%, and 0.130%, respectively in all fields. The average depth of the organic pad was 2.23 cm, ranging from 0 to 10.16 cm. Seventy five percent of the fields had organic pads 0.127-2.54 cm thick and 20% greater than 2.54 cm.

In an attempt to improve correlations, leaves within a 0.01M2 quadrat were sampled from 110 clones in 10 commercial blueberry fields and leaf nutrient concentrations compared with nutrient concentrations in 3-inch soil samples taken directly beneath the quadrat. The strongest correlation was between soil Mn and leaf Mn (r2= o.59). Leaf samples, although more expensive than soil samples, appear to be a better indicator of lowbush blueberry fertilizer requirements than soil samples.

Free access
Author:

Liquid phosphorus (23% phosphoric acid) was applied preemergence at 0, 22.4, 44.8, 67.2, or 89.6 kg·ha-1 to 9 fields: 3 commercial blueberry fields having plants with very low (<.111%), 3 low (.111-.125%), and 3 adequate (>.125%) leaf phosphorus concentrations. Years of application ('89,'89+'91,'89 + '91 + '93) were assigned in a split-block RCB design with 4 replications at each location. A linear increase in leaf phosphorus concentration with increasing rates of P application was found in both 1989 and 1991. Differences in response were found among locations. A second application in 1991 was effective in raising leaf P levels at most locations to higher levels than the application in 1989. Also, there were higher levels of leaf P in treatment plots that only received P fertilizer in 1989 compared to controls, indicating a carry over effect.

Free access
Author:

Five lowbush blueberry (Vaccinium Angustifolium Ait.) clones with leaf tissue boron levels below 20 ppm were selected in a commercial lowbush blueberry field in Washington County, Maine. Four 2.4 M2 treatment plots established on each clone received a foliar spray of Solubor at 0, 200, 400 or 600 ppm boron in September. The terminal 3.8 cm of stem, sampled in November, had increased concentrations of boron with increasing rates of boron application. Boron sprays also increased boron leaf tissue concentrations in July of the crop year. Ten stems with four flower buds were tagged in each treatment plot to determine the effect of boron treatments on fruit set and berry size. Fruit set was the same for each bud, but the number of blossoms and fruit per bud was greater on buds below the terminal. Yield increased in response to boron application up to 400 ppm, due to increases in fruit set, berry number and berry size of three of the five clones.

Free access

Iris versicolor (blue-flag iris) is a native aquatic plant that grows from Maine to Virginia. It is an important species of wetland regeneration and restoration. Unfortunately, seed germination seldom occurs in the wild. To address this problem, seeds of Iris versicolor were soaked with gibberellin acid (0, 500, 1000, and 1500 ppm) for 24 h after 120 days of cold treatment at 4 °C and then were randomly assigned to three germination temperatures (constant 21 °C; 24 °C/18 °C; 27C/15 °C) and placed in darkness. Germination rates for the three temperature treatments were 54.4% (21 °C), 96.5% (24 °C/18 °C), and 96.0% (27C/15 °C). Oscillating temperature treatments had significantly greater germination rate than constant temperature. Gibberellin acid had significant influence on germination rate; only the constant 21 °C was not favorable for germination. The germination rate was higher at 1000 than at 500 ppm or 1500 ppm or more. Germination occurred within 10 days under germination temperature treatments. All seedlings in petri dishes were successfully transplanted into growing flats.

Free access

Four organic fertilizers were evaluated in a commercial lowbush blueberry field with a history of N and P deficiency. In nonorganic production, diammonium phosphate (DAP) is the standard fertilizer for correcting N and P deficiency. Nitrogen a rate of 67 kg·ha-1 [Renaissance (8-2-6), ProHolly (4-6-4), Pro Grow (5-3-4), Nutri-Wave (4-1-2), or DAP (18-46-0)] was applied preemergent to 1.8-m × 15-m treatment plots. Leaf N and P were deficient (<1.6% and 0.125%, for N and P, respectively) in the unfertilized plots that served as controls. DAP and Pro-Holly raised leaf N to satisfactory levels (>1.6%). Only DAP raised leaf P concentrations (0.144%), compared to controls (0.122%). Leaf K was not deficient, but was raised by Pro-Holly. Soil pH was slightly lowered by Renaissance (4.2) and raised by Pro-Holly (4.4), compared to the control (4.3). Soil P concentrations were raised by DAP and soil S by Pro-Holly. Soil K was raised by all fertilizers except DAP, compared to the control. Pro-Holly and DAP were equally effective in increasing stem height, branching, branch length, flower bud formation, and yield, compared to the control and the other organic fertilizers. Pro-Holly could effectively substitute for DAP in organic wild blueberry production.

Free access

Acommercial lowbush blueberry field with a history of N and P deficiency was used to study the response to several organic fertilizers. Diammonium phosphate (DAP) is the standard fertilizer for correcting N and P deficiencyin non-organic production. At a rate of 67 kg N/ha Rennaisance (8–2–6), Pro-Holly (4–6–4), Pro Grow (5–3–4), Nutri-Wave (4–1–2), or DAP (18–46–0) was applied preemergent to 1.8 × 15 m treatment plots. An unfertilized plot served as the control. Leaf N and P were deficient in the controls. DAP and Pro-Holly raised leaf N to satisfactory levels (1.6%). Only DAP raised leaf P concentrations (0.144%), compared to controls (0.122%). Leaf K was not deficient but was raised by Pro-Holly. Pro-Holly and DAP were equally effective in increasing stem height, branching, branch length, flower bud formation, and yield. Pro-Holly could effectively substitute for DAP in organic wild blueberry production.

Free access

Two experiments evaluated the Trevett (1972) Cu standard of 7 ppm by raising leaf Cu concentrations in a commercial blueberry field having low (∼4 ppm) leaf Cu concentrations. A foliar spray of Cu Keylate (5% Cu) (Stoller Enterprises, Inc.) in a volume of 627 L·ha-1 applied 0, 0.56 1.12, 1.68, or 2.24 kg·ha-1 of Cu. Ammonium sulfate at 3.1 kg·ha-1 was added to the solutions to enhance Cu absorption. A preemergent soil application of Micromate Calcium Fortified Mix (Stoller Enterprises, Inc.), a micronutrient mixture containing Cu (0.3%), was also tested at 14 kg·ha-1. These 6 treatments were replicated 7 times in a randomized complete-block design in 2001. Treatments were reapplied in 2003 in a split-plot design with Cu treatments as the main plots and an application of DAP at 448 kg·ha-1 as the split plots. In 2001, leaf Cu concentrations increased linearly, up to 12 ppm, with increasing rates of Cu, but Micromate had no effect. Leaf N and P concentrations were below the standards of 1.6% and 0.125%, respectively, and could explain why raising leaf Cu concentrations had no effect on growth or yield. In 2003, DAP corrected the N and P deficiency and leaf Cu concentrations were raised to above the 7 ppm standard with 2.24 kg·ha-1 of Cu, but again, no effect on growth or yield was found. The Cu standard appears to be too high.

Free access

A commercial lowbush blueberry (Vaccinium angustifolium Ait.) field deficient in leaf N and P was used to compare organic and inorganic fertilizers. In a RCB design with eight replications of 12 treatments, experimental plots received 33.6 or 67.2 kg·ha-1 rates of N (urea), P (23% phosphoric acid), N + P (DAP), N + P + K (5-10-5), or N + P + K (fish hydrolysate, 242). Fertilizer containing N alone was as effective in raising N leaf concentrations as those containing N and P. However, leaf P concentrations were raised more by fertilizer providing N and P than only P. Fish hydrolysate fertilizer was as effective as 5-10-5 in raising leaf N, P, and K concentrations in prune and crop year leaf samples. At the 67.2 kg·ha-1 rate, fish hydrolysate, N, NP and NPK increased stem length, N and NP increased flower bud density and fish hydrolysate, N and NPK increased yield compared to the control.

Free access

Experimental plots in a commercial lowbush blueberry (Vaccinium angustifolium Ait.) field deficient in N and P received preemergent 33.6 and 67.2 kg/ha rates of N (urea), P (23 % phosphoric acid), N+P (DAP), N+P+K (S-10-5) or N+P+K (fish hydrolysate, 2-4-2). A RCB design with eight replications of 12 treatments was used. Fertilizer containing N alone was as effective in raising N leaf concentrations, as those containing N and P. However, leaf phosphorus concentrations were raised more by fertilizer providing N and P than only P. Fish hydrolysate fertilizer was as effective as 5-10-5 in raising leaf N, P and K concentrations in prune and crop year leaf samples.

Free access