Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: John R. Teasdale x
Clear All Modify Search
Free access

Aref A. Abdul-Baki and John R. Teasdale

A 3-year study was conducted at the Beltsville Agricultural Research Center, Beltsville, Md., to evaluate plant stand, growth, and yield of snap bean (Phaseolus vulgaris L.) cultivars Carlo and Matador grown with conventional tillage (CT) or with no-tillage hairy vetch (Vicia villosa Roth) (HV) mulch. Plant stand and dry mass of both cultivars in CT were similar to those in no-till HV. However, leaf area and yield with no-till HV were significantly higher than those with CT.

Free access

Aref A. Abdul-Baki and John R. Teasdale

Hairy vetch, subterranean clover, polyethylene black mulch (PBM), and Horto paper were evaluated in field-grown fresh market production of tomatoes (Lycopersicon esculentum Mill), cv `Sunny'. Plant mulches were grown in beds in the fall, mowed immediately before planting, and the tomato seedlings were planted without tillage in a low input system. Yields (t.ha-1) for hairy vetch, subterranean clover, PBM, Horto paper, and no mulch were 72.1, 46.6, 59.9, 54.0, and 29.8, respectively. Although the tomato plants grown under plant mulches received 50% of the recommended fertilizer application, they produced more vigorous plants than those in other treatments. Plant mulches were effective in controlling growth of weeds and infestation by Colorado potato beetle.

Free access

Aref A. Abdul-Baki and John R. Teasdale

Stand, plant growth, and yield were determined on `Matador' and `Carlos' snap beans (Phaseolus vulgaris L.) that were planted as a summer crop in a 3-year study using conventional tillage (CT) and no-till hairy vetch (Vicia villosa L. Roth) mulch (HV) systems. The CT plots received (kg·ha–1) 67 N as ammonium nitrate at preplanting and both CT and HV plots received (kg·ha–1) 17N–34P–17K with the planter. Stand differences between CT and HV were not significant. Average yields in CT and HV over a 3-year period were 13.3 and 19.8 t·ha–1, respectively. Average plant dry mass 2 days before harvest was not significantly different between CT and HV. Leaf area per plant 2 days before harvest was 1992 and 3092 cm2 in CT and HV, respectively. Higher yield in the HV mulch system, as compared to CT, can be attributed to larger leaf area per plant, higher soil organic matter and water-holding capacity, and less soil compaction in the HV plots.

Free access

John R. Teasdale and Aref A. Abdul-Baki

Hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and rye (Secale cereale L.) and mixtures of rye with hairy vetch and/or crimson clover were compared for no-tillage production of staked, fresh-market tomatoes (Lycopersicon esculentum Mill.) on raised beds. All cover crops were evaluated both with or without a postemergence application of metribuzin for weed control. Biomass of cover crop mixtures were higher than that of the hairy vetch monocrop. Cover crop nitrogen content varied little among legume monocrops and all mixtures but was lower in the rye monocrop. The C:N ratio of legume monocrops and all mixtures was <30 but that of the rye monocrop was >50, suggesting that nitrogen immobilization probably occurred only in the rye monocrop. Marketable fruit yield was similar in the legume monocrops and all mixtures but was lower in the rye monocrop when weeds were controlled by metribuzin. When no herbicide was applied, cover crop mixtures reduced weed emergence and biomass compared to the legume monocrops. Despite weed suppression by cover crop mixtures, tomatoes grown in the mixtures without herbicide yielded lower than the corresponding treatments with herbicide in 2 of 3 years. Chemical name used: [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one](metribuzin).

Free access

John R. Teasdale and Aref A. Abdul-Baki

Growth analysis was used to document growth responses of staked, fresh-market tomatoes (Lycopersicon esculentum Mill.) to black polyethylene or hairy vetch (Vicia villosa Roth) mulches. Leaf area and dry mass of vegetation and fruit were measured weekly during two growing seasons. Growth was better early in the season but worse later in the season for plants grown with black polyethylene than with hairy vetch mulch. Unit leaf rate (rate of growth per unit leaf area) of fruit was higher with black polyethylene than with hairy vetch, whereas the reverse was true of vegetation. This relationship led to a higher leaf area ratio and leaf area duration of plants grown with hairy vetch than with black polyethylene. Consequently, tomatoes grown with black polyethylene produced higher early yield because of increased partitioning to fruit. However, tomatoes grown with hairy vetch eventually outgrew and outyielded those grown with black polyethylene because of increased partitioning to leaf area.

Free access

John R. Teasdale and Aref A. Abdul-Baki

Temperature and root length at selected locations within a raised bed under black polyethylene, hairy vetch (Vicia villosa Roth) residue, or bare soil were measured and correlated with tomato (Lycopersicon esculentum Mill.) growth. Early in the season, before the tomato leaf canopy closed, soil temperature was influenced more by vertical depth in the bed than by horizontal position across the bed. Maximum soil temperatures under black polyethylene averaged 5.7 and 3.4C greater than those under hairy vetch at 5 and 15 cm deep, respectively. More hours at optimum temperatures for root growth (20 to 30C) during the first 4 weeks of the season probably accounted for greater early root and shoot growth and greater early yield of tomatoes grown with black polyethylene than hairy vetch residue or bare soil. After canopy closure, soil temperatures under tomato foliage within the row were reduced by an average of 5.2 and 2.2C at 5 and 15 cm deep, respectively, compared to those on the outer edge of the beds. Most tomato roots were in areas of the bed covered by the tomato canopy where temperatures in all treatments remained in the optimum 20 to 30C range almost continuously. Soil temperature, therefore, did not explain why tomato plants in the hairy vetch treatment had equal or higher total yields than the black polyethylene or unmulched treatments.

Free access

Aref A. Abdul-Baki and John R. Teasdale

Nitrogen requirements by fresh-market field tomatoes (Lycopersicon esculentum Mill.) were determined on plants grown in a hairy vetch mulch (HVM) or in black polyethylene mulch (BPM). Nitrogen treatments were 0, 56, 112, and 168 kg/ha delivered weekly through the trickle system. Yields in BPM increased significantly with higher applications of nitrogen from 54 to 91 tons/ha and chlorophyll content of fully expanded leaves increased from 7.8 to 11.3 OD664 per 100 mg fresh weight. In contrast, neither yield nor chlorophyll content of leaves increased significantly by adding nitrogen. The 0 nitrogen treatment in HVM yielded 89 ton/ha and chlorophyll content was 13.5 OD664 making it equivalent to those in BPM that had received 168 kg nitrogen/ha. The results suggest that hairy vetch can provide all the nitrogen required by the subsequent tomato crop and produces high yields and vigorous plants.

Free access

John R. Teasdale and Aref A. Abdul-Baki

Temperature and root length at selected locations within a raised bed under black polyethylene (BP), hairy vetch (Vicia villosa Roth) residue (HV), or bare soil (BS) were measured and correlated with tomato (Lycopersicon esculentum Mill.) growth. Early in the season, before the tomato leaf canopy closed, soil temperature was influenced more by vertical depth in the bed than by horizontal location across the bed. Maximum soil temperatures under BP averaged 5.7 and 3.4C greater than those under HV at 5- and 15-cm depths, respectively. More hours at temperatures >20C during the first 4 weeks probably accounted for greater early root and shoot growth and greater early yield of tomatoes grown in BP rater than in HV or BS. After canopy closure, soil temperatures under tomato foliage were reduced compared to those on the outer edge of the beds. Most tomato roots were in areas of the bed covered by the tomato canopy where temperatures in all treatments remained in the optimum 20 to 30C range almost continuously. Soil temperature, therefore, did not explain why total yield was higher in the HV than the BP or BS treatments.

Free access

Lidia M. Carrera, Aref A. Abdul-Baki and John R. Teasdale

Cover crops combined with conservation tillage practices can minimize chemical inputs and improve soil quality, soil water-holding capacity, weed suppression and crop yields. No-tillage production of sweet corn (Zea mays var. `Silver Queen') was studied for 2 years at the USDA Beltsville Agricultural Research Center, Md., to determine cover crop management practices that maximize yield and suppress weeds. Cover crop treatments were hairy vetch (Vicia villosa Roth), rye (Secale cereale L.) and hairy vetch mixture, and bare soil (no cover crop). There were three cover crop killing methods: mowing, rolling or contact herbicide paraquat. All plots were treated with or without atrazine and metolachlor after planting. There was a 23% reduction in sweet corn plant population in the rye-hairy vetch mixture compared to bare soil. Averaged over both years, sweet corn yield in hairy vetch treatments was 43% greater than in bare soil, whereas yield in the rye-hairy vetch mixture was 30% greater than in bare soil. There were no significant main effects of kill method or significant interactions between kill method and cover crop on yield. Sweet corn yields were not different for hairy vetch or rye-hairy vetch treatments with or without atrazine and metolachlor. However, yield in bare soil without the herbicides atrazine and metolachor were reduced by 63% compared to bare soil with these herbicides. When no atrazine and metolachlor were applied, weed biomass was reduced in cover crops compared to the bare soil. Regression analysis showed greater yield loss per unit of weed biomass for bare soil than for the vetch or rye-hairy vetch mixture. This analysis suggests that cover crops increased sweet corn yield in the absence of atrazine and metolachlor not only by reducing weed biomass, but also by increasing the competitiveness of corn to weeds at any given biomass.

Free access

Aref A. Abdul-Baki, John R. Teasdale and Ronald F. Korcak

A 3-year experiment was conducted to determine the optimum fertilizer N requirements of fresh-market tomato (Lycopersicon esculentum Mill.) `Sunbeam' grown on a hairy vetch (Vicia villosa Roth.) or black polyethylene mulch. In 1993 and 1994, four rates of fertilizer N (0, 56, 112, and 168 kg·ha-1) as water-soluble NH4NO3 were applied in 14 equal applications through the trickle irrigation system starting 1 week after planting. Four additional rates (224, 280, 336, and 392 kg·ha-1) were applied in 1995 to assess the plant response to supra-optimal levels of N. Hairy vetch produced 3.3–4.5 t·ha-1 of above-ground biomass and a total N content of 126–169 kg·ha-1 in the above-ground biomass. Leaf N content at 7 weeks after transplanting of tomatoes correlated positively with yield from black polyethylene but did not correlate with yield from the hairy vetch plots where leaf N content was optimal at all N rates. Predicted tomato yields were higher for the hairy vetch than for the black polyethylene treatment at all applied N rates in all years. Tomatoes grown in black polyethylene required N at 130 to 144 kg·ha-1 to achieve yields equivalent to those grown following unfertilized hairy vetch. Tomato yield increased in response to applied N in both mulches in all 3 years; optimum N rates of 89 and 190 kg·ha-1 in hairy vetch and black polyethylene, respectively, were predicted by a linear plateau model, and 124 and 295 kg·ha-1 by a quadratic plateau model. The linear plateau model is recommended because it would allow less N to become available for runoff and leaching.