Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: John P. Damicone x
Clear All Modify Search
Full access

Brian A. Kahn and John P. Damicone

Drip-irrigated, stake-and-weave supported tomato (Lycopersicon esculentum) plots were established in 2005 and 2006. All plots (except controls) were treated with a kaolin particle film product (Surround WP) mixed at 0.5 lb/gal of water and applied with a pressurized hand sprayer. Sprays began after transplanting and were repeated as needed to maintain a particle film on the foliage. Sprays were discontinued either at anthesis, at first green fruit 5 cm in diameter, or at first colored fruit harvest. Multiple hand harvests were made as fruit matured. In 2005, all kaolin treatments reduced marketable fruit number and weight, whereas in 2006 there were no significant effects. Cull fruit weight and average weight per marketable fruit were unaffected by treatments during either year. Results indicate that when applied before harvest begins, Surround may not improve marketable yields of fresh tomatoes.

Free access

Brian A. Kahn, John P. Damicone and Raymond Joe Schatzer

Benomyl was compared with copper hydroxide, azoxystrobin, tebuconazole, acibenzolar-S-methyl, and basic copper sulfate for efficacy of cercospora leaf spot [incited by Cercospora brassicicola P. Henn] management on turnip greens [Brassica rapa L. var. (DC.) Metzg. utilis]. Treatments included various application times and were evaluated in three field experiments over 2 years. The few yield effects that occurred were not consistent between years. Copper hydroxide and basic copper sulfate were not useful alternatives to benomyl due to a combination of phytotoxicity symptoms and ineffective disease control. Inconsistent results were observed with acibenzolar-S-methyl. A single, early application of tebuconazole greatly reduced cercospora leaf spot severity relative to the control in both years. Tebuconazole may be a good alternative to benomyl if a label can be obtained. Multiple (at least two) applications of azoxystrobin may be needed to achieve the same degree of cercospora leaf spot control as would result from a single properly timed application of benomyl. Although azoxystrobin is now labeled for turnip greens, grower costs will likely increase as a result of benomyl being discontinued. Chemical names used: methyl-1-[(butylamino)carbonyl]-H-benzimidazol-2-ylcarbamate (benomyl); methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate (azoxystrobin); alpha-[2-(4-chlorophenyl)ethyl]-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol (tebuconazole); 1,2,3-benzothiadiazole-7-thiocarboxylic acid-S-methyl-ester (acibenzolar-S-methyl).

Free access

Brian A. Kahn, John P. Damicone, Kenneth E. Jackson, James E. Motes and Mark E. Payton

Nine nematicide treatments were evaluated from 1993 through 1995 in field experiments on paprika pepper (Capsicum annuum L.). Materials tested included a chitinurea soil amendment and six chemicals: fosthiazate, carbofuran, aldicarb, oxamyl, fenamiphos, and 1,3-dichloropropene (1,3-D). Stands at harvest were increased relative to the control by chitin-urea, fosthiazate, and 1,3-D, but only fosthiazate increased marketable fruit yield relative to the control. Aldicarb reduced preharvest nematode populations relative to the control, but aldicarb did not result in a significant fruit yield increase. Chitin-urea was the only treatment to produce a net increase in nematode counts from preplant to preharvest in all three years. Although fosthiazate was promising, nematicide treatments were of limited benefit under the conditions of these studies. Chemical names used: (RS)-S-sec-butyl O-ethyl 2-oxo-1,3-thiazolidin-3-ylphosphonothioate (fosthiazate); 2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate (carbofuran); 2-methyl-2-(methylthio)propionaldehyde O-(methylcarbamoyl)oxime (aldicarb); methyl N′N′ -dimethyl-N-[(methylcarbamoyl)oxy]-1-thiooxamimidate (oxamyl); ethyl 3-methyl-4-(methylthio)phenyl(1-methylethyl) phosphoramidate (fenamiphos).

Free access

Brian A. Kahn, John P. Damicone, Kenneth E. Jackson, James E. Motes and Mark E. Payton

Nematodes (Meloidogyne sp.) are a potential problem when paprika peppers (Capsicum annuum L.) are grown in fields historically planted to peanuts (Arachis hypogaea L.). Nine nematicide treatments were evaluated over 3 years in field experiments on paprika pepper. Materials tested included the chitin nematicide ClandoSan and six chemicals: fosthiazate, carbofuran, aldicarb, oxamyl, fenamiphos, and dichloropropene. Stands at harvest were increased relative to the control by ClandoSan in 2 of 3 years. Other horticultural effects (plant dry mass and fruit yield) were minimal for all nine nematicide treatments. No one nematicide treatment consistently reduced nematode counts at harvest relative to the control. Nematode counts at harvest were greater in plots treated with ClandoSan than in plots treated with any other material in 2 of 3 years. Nematicide treatments were not cost effective under the conditions of these studies.