Search Results

You are looking at 1 - 10 of 60 items for

  • Author or Editor: John M. Ruter x
  • All content x
Clear All Modify Search
Free access

John M. Ruter

Mouse ear disorder on container-grown river birch (Betulanigra L.) is a national problem caused by a deficiency of nickel. Symptomatic plants have leaves which are small, wrinkled, darker green, cupped, and have necrotic margins. Research showed that mouse ear could be cured by applications of nickel sulfate (Ruter, 2004). Further research was needed to determine optimal rates of application for sprays and drenches and to determine if phytotoxicity occurs at high rates. A study was initiated at a nursery in South Georgia on 25 June 2003, using river birch in their second growing season in #15 containers. Plants were selected for uniformity of mouse ear disorder. Treatments included a control, urea (0.24 g·L-1) + surfactant (1.0 mL·L-1), 250, 500, 750, and 1000 mg·L-1 nickel sulfate sprays, and substrate drenches applied at 150 and 300 mg of Ni/pot. After 30 days, all plants treated with nickel sulfate had 100% normal growth, except the 150 mg of Ni/pot drench, which had 79% of the canopy showing normal growth. No phytotoxicity was noted. Plants receiving foliar sprays had a 66% to 72% increase in leaf area, a 64% to 68% increase in leaf dry mass, a 31% to 44% increase in stem length, and a 9% to 17% increase in specific leaf area compared to nontreated plants. Drench treatments increased leaf area up to 62%, leaf dry mass to 55% and stem length up to 29% over control plants. Nickel in the foliage of nontreated plants was 2.3 mg·kg-1. For the spray treatments, foliar Ni ranged from 5.5 mg·kg-1 for the 250 mg·L-1 treatment to 9.3 mg·kg-1 for the 1000 mg·L-1 treatment. Though plants at the high rate of drench treatment resumed normal growth, foliar Ni levels were not different from control plants. In general, if plants were treated with Ni, then foliar B, Fe, and Zn decreased.

Free access

John M. Ruter

Membrane thermostability of Heritage river birch (Betula nigra L. Heritage) was measured by electrolyte leakage from excised roots of plants grown in pot-in-pot (PIP) and conventional aboveground production systems (CPS). The predicted critical midpoint temperature (Tm) for a 30-min exposure was 54.6 ± 0.2 °C for PIP and 56.2 ± 0.6 °C for CPS plants. Plants grown PIP had a steeper slope through the predicted Tm, suggesting a decreased tolerance to high root-zone temperatures in relation to plants grown aboveground. Since the root systems of Heritage river birch grown PIP are damaged at lower temperatures than plants grown aboveground, growers should prevent exposure of root systems to high temperatures during postproduction handling of plants grown PIP.

Free access

John M. Ruter

A study was conducted with Prunus × incamp `Okame' to evaluate the effects of a pot-in-pot production system compared to a conventional above-ground system and cyclic irrigation on plant growth and water loss. Plants were grown in #7 (26-L) containers with a 8:1 pinebark:sand (v/v) substrate. Cyclic irrigation provided the same total volume of water, but was applied one, three, or four times per day. Final plant height and stem diameter, shoot and root dry weight, total biomass, and root:shoot ratio were all increased for plants grown pot-in-pot compared to above-ground. Multiple irrigation cycles increased stem diameter, shoot dry weight, and total biomass, compared to a single irrigation application. Multiple irrigation cycles decreased the root:shoot ratio. Evapotranspiration was influenced by production system, irrigation, and date. Amount of water lost as leachate was influenced by irrigation and date. Cyclic irrigation resulted in a two-fold decrease in leachate volume. Soluble salts and nitrate-nitrogen in the leachate were influenced by an interaction between production system, irrigation, and date.

Free access

John M. Ruter

A study was conducted with Lagerstroemia indica x fauriei `Acom a' to evaluate methods for reducing rooting-out problems in a PIP production system. The products tested were Biobarrier™, a geotextile fabric impregnated with trifluralin; Root Control'” fabric bag material; and Spin Out™, a commercial formulation of copper hydroxide (7.1%) in latex paint. Biobarrier™ reduced plant height, shoot dry weight, percent root dry weight outside of the planted container and total biomass compared to the non-treated control. For the control, 7.1% of the total root dry weight was found between the holder pot and planted container compared to 0.2% for the Biobarrier™ treatment. When the holder pot and planted container or the planted container and Root Control™ fabric were both treated with Spin Out™, plant height and shoot dry weight were reduced. Spin Out™ reduced root circling on the sidewalls of the planted containers but not on the bottom of the containers. All treatments except the control reduced rooting-out to a degree that allowed for the manual harvesting of the planted container from the holder pot after seven months in the field.

Free access

John M. Ruter

Membrane thermostability of `Needlepoint' Chinese holly (Ilex cornuta Lindl. & Paxt.), `Albo-marginata' English holly (Ilex aquifolium L.), and `Nellie R. Stevens', an Ilex aquifolium × Ilex cornuta hybrid, was determined by measuring electrolyte leakage in excised leaves and roots. The critical midpoint heat-killing temperature (T,) after a 30-min exposure was 54.4 ± 0.4C for `Nellie R. Stevens' leaves and was ≈ lC higher than that for Chinese (52.9 ± 0.3C) or English holly (52.9 ± 0.4C). The Tm for English holly roots (53.9 ±_ 1.5C) was higher than that for either `Nellie R. Stevens' (51.7 ± 0.3C) or Chinese holly (50.1 ± 0.3C). The results of this study suggest that English holly and `Nellie R. Stevens' leaves and roots can withstand direct heat injury equal to or greater than that of Chinese holly.

Free access

John M. Ruter

The long-term effects of paclobutrazol applied to container-grown `Mojave' pyracantha (Pyracantha ×) and `San Jose' juniper (Juniperus chinensis L.) were investigated. Paclobutrazol was applied as a drench to container-grown (2.8 liter) plants at the rates of 0, 5, 10, 20, and 40 mg a.i./pot in June 1991, and plants were transplanted to the field in Feb. 1992. Pyracantha plant height, shoot and root dry weight, and total biomass (shoot dry weight + root dry weight) decreased quadratically as rate of paclobutrazol increased during nursery production. Paclobutrazol had no effect on plant height or shoot dry weight of Juniperus, although width indices were reduced. Ratings for root quality for Juniperus in containers increased as rate of paclobutrazol increased. After 9 months in the landscape, paclobutrazol still influenced plant height, width, and shoot dry weight for Pyracantha but had no effect on Juniperus. As rate of application increased, fruit retention on Pyracantha increased. Paclobutrazol applied as a container medium drench at 5 mg a.i./pot was excessive during nursery production of Pyracantha and Juniperus. Chemical name used: [(2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-yl)penten-3-ol] (paclobutrazol).

Full access

John M. Ruter

A study was conducted with Coreopsis verticillata L. `Moonbeam' and Plumbago auriculata Lam. to evaluate the growth of these perennial plants in 2.6-liter (#1) black plastic containers (BPCs) compared to plants grown in fiber containers with Cu(OH)2 (FCs+) impregnated into the container walls. Coreopsis root and shoot dry weight was unaffected by container type, whereas Plumbago root and shoot dry weight was greater (2.2× and 1.6×, respectively) for plants grown in FCs+ compared to BPCs. The root : shoot ratio of Plumbago increased 30% when plants were grown in FCs+ compared to BPCs. Root circling was effectively controlled for both species grown in the FCs+. FCs remained in salable condition for the duration of the study. In contrast to untreated FCs, FCs+ will have to be removed at transplanting to allow for normal root development.

Free access

John M. Ruter

A study was conducted to compare four different controlled-release fertilizers when used in conjunction with Tex-R Geodiscs on the growth of Ilex crenata Thunb. ex J.A. Murray `Compacta' in 3.8 L (#1) containers. The fertilizers used were Osmocote Plus Southern Formula (18N-3.9P-10K), Osmocote Plus Northern Formula (18N-3.9P-10K), Wilbro (15N-1.7P-7.5K), and Nutricote T-360 (17N-2.6P-6.6K) all applied at the rate of 1.8 kg N/m3. Geodisc treatments were: 1) no disc, 2) fertilizer placed on top of the disc, and 3) fertilizer placed beneath the disc. At 2 and 4 months after the initiation of the study, the growth indices for plants grown with both Osmocote Plus fertilizers were larger than for either of the other two fertilizers. After 7 months, final growth indices were greater for the Osmocote Plus and Wilbro treatments compared to Nutricote. Final leaf, stem, and root dry masses were all greater for the Osmocote Plus fertilizers compared to the other two, as was final plant quality. Plants with fertilizer placed on top of the disc were smaller compared to the no disc or beneath the disc treatments. Geodisc treatment had no influence on shoot dry mass or final plant quality. Data for leachate nutrient analysis and evapotranspiration will also be presented.