Search Results
`Nellie White' Easter lily bulbs (Lilium longiflorum Thunb.) were given 6 weeks of 5.5C, placed in the greenhouse, and divided into groups based on number of days to emergence: 0 to 6, 7 to 13, 14 to 20, or 21 to 27 days. At emergence, the shoots received 0, 1, 2, or 3 weeks of long days (LDs). The experiment was repeated for 3 consecutive years. Late-emerging plants had fewer days from emergence to visible bud and anthesis than early-emerging plants. Consequently, late-emerging plants flowered within 3 to 11 days of early emerging plants despite 16 to 22 days difference in emergence time. Late-emerging plants were tallest, while plants emerging in the second week had the most leaves. Flower count was not influenced by emergence date in Year 1. In Year 2, flower count decreased curvilinearly with later emergence. In Year 3, flower count was highest in plants emerging in the second week and lowest in the last week. Increasing LDs decreased the number of days from emergence to visible bud and anthesis but increased plant height. LDs did not affect leaf count in any year or flower count in Years 1 and 2. In Year 3, flower count increased with increasing weeks of LDs. LD × emergence date interactions existed, but varied from year to year.
Three cut-flower species, Ageratum houstonianum `Tall Blue Horizon', Antirrhinum majus `Spring Giants Mix', and Helianthus annuus `Sunrich Orange' were grown in 806, 1801, or 1001 bedding plants flats resulting in 32 (85), 86 (280), and 156 (620) cm2 (mililiter medium)/plant, respectively. Plants were sown Sept. 1997 (fall), Dec. 1997 (winter), or Mar. 1998 (spring). Increasing area per plant decreased number of stems harvested but increased percent of stems harvested for all species. Increasing area per plant increased stem length and selling price for Antirrhinum and Helianthus; no significant difference was noted for Ageratum. Days to anthesis decreased with later planting for Antirrhinum and Helianthus; however, for Ageratum winter planting had the longest crop time and spring planting the shortest. Gross profit per square meter and square meter per week increased with decreasing area per plant for Ageratum and Helianthus; no significant difference was noted for Ageratum. Gross profit per square meter per week increased with later planting for all species. With all species 806 flats or spring planting required frequent irrigation, which would best be supplied by an automated irrigation system. Experiment was repeated in 1998/1999 using Carthamus tinctorius `Lasting Yellow', Celosia argentea `Chief Mix', Cosmos bipinnatus `Early Wonder', Helianthus annuus `Sunbright, Tagetes erecta `Promise Orange' and `Promise Yellow', and Zinnia elegans `Giant Deep Red' and `Oklahoma Mix'.
`Blenda', `Leen v.d. Mark', `Monte Carlo', `Negritta' and `Paul Richter' tulip (Tulipa gesneriana) bulbs received a total of 15 weeks of cold (5°C) with 0, 2, 4, 6, 8, 10, or 12 weeks applied to dry, unpotted bulbs. The bulbs were then planted, watered, and exposed to cold for the remainder of the 15 weeks. Bulbs receiving up to 10 weeks dry, unpotted cold showed no decrease in flowering percentage and plant quality when compared to bulbs receiving 15 weeks of moist, potted cold. For bulbs receiving 12 weeks of dry cold, flowering percentage was generally lower when compared with 0-10 weeks of dry cold and varied with the cultivar and the year, i.e. 63% of `Paul Richter' and 100% of `Negritta' bulbs receiving 12 weeks of dry cold flowered in year one: whereas, 95% of `Paul Richter' and 70% of `Negritta' bulbs flowered in year two. For all cultivars, bulbs receiving 12 weeks of dry cold had the shortest shoots at the end of the cooling treatment compared with the other treatments. While final height varied significantly with the cultivar in year two, differences were not commercially noticeable. Final height was not influenced in year one.
Poinsettia (Euphorbia pulcherrima Wind. ex. Klotzsch) cultivars were divided into free-branching and restricted-branching groups. Auto and reciprocal grafts were made among three free-branching cultivars, Annette Hegg Brilliant Diamond (BD), Annette Hegg Topwhite (TW), and Annette Hegg Hot Pink (HP), and two restricted-branching cultivars, Eckespoint C-1 Red (CR) and Eckespoint C-1 White (CW). when CR scions were grafted onto BD stocks, vegetative characteristics of branching pattern and leaf morphology of CR plants were altered when compared to the control graft combination CR/CR (scion/stock). Branching pattern was determined by pinching the scion above the 12th node and measuring axillary shoot length, diameter, and node number 30 days later. CR scions grafted onto BD stocks produced a plant very similar to BD plants when axillary shoot length and node number were compared. However, axillary shoot diameter and leaf morphology were intermediate between CR and BD plants. Changes were retained after two generations of serial vegetative propagation and are considered permanent. The reproductive characteristics of anthesis date, bract color, and cyathia cluster diameter were not influenced by the stock. CR/BD plants produced twice as many axillary inflorescences as BD/BD or BD/CR plants, while CR/CR plants did not produce any. All of the free-branching cultivars were able to alter the vegetative characteristics of all of the restricted-branching cultivars.
The free-branching poinsettia (Euphorbia pulcherrima Willd. ex. Klotzsch) cultivar Annette Hegg Brilliant Diamond (BD) contained a free-branching agent that was graft-transmissible to the restricted-branching cultivar Eckespoint C-1 Red (CR). CR plants were transformed by the agent regardless of whether BD plants were used as scion or stock, indicating that the agent moved basipetally and acropetally through the graft union. The agent was repeatedly transmitted to a CR plant by serial grafting with a free-branching poinsettia plant. A minimum of 10 days contact through grafting was required for BD plants to transmit the agent to CR plants. Percentage of CR plants exhibiting the free-branching characteristic increased from 0% for < 10 days of graft contact with BD plants to 100% after 30 days.
Vegetative, single-stem poinsettia plants (Euphorbia pulcherrima Willd. `Gutbier V-14 Glory') were allowed to develop 10, 15, or 20 nodes (nodal groups). Within each nodal group, blades from the same node position were removed, combined into one sample per node, and analyzed for nutrient content. Nutrient concentrations were found to be distributed within the plant in one of three patterns: 1) N, P, and K concentrations were higher in upper than in lower leaves; 2) Ca, Mg, Fe, Mn, and B concentrations were higher in lower than in upper leaves; and 3) Cu and Zn concentrations were higher in upper and lower leaves than in middle leaves. When 10, 15, and 20 noded groups were compared, the distributional patterns were similar, but actual nutrient concentrations between groups differed. Leaf P, Ca, Mg, Fe, Mn, Zn, and B concentrations increased over time. However, concentrations of N, K, and Cu were highest in 43-day-old leaves and lowest in 19-day-old leaves for N and Cu and lowest in 67-day-old leaves for K.
Campanula medium L. `Champion Blue' (CB) and `Champion Pink' (CP) and Lupinus hartwegii Lindl. `Bright Gems' (LH) were grown in 8- or 16-h initial photoperiods, transplanted when two–three, five–six, or eight–nine nodes developed and placed under 8-, 12-, or 16-h final photoperiods. Greatest flowering percentage (100%) for CB and CP occurred when plants with two–three nodes were grown in the 16-h final photoperiod. The lowest flowering percentage for CB (3.3%) and CP (15.7%) resulted from plants grown in the 8-h photoperiod continuously (initial and final). CB and CP stem lengths (49.8 cm) were longest when grown in the 8-h photoperiod continuously and shortest with the 16-h initial and 8-h final photoperiods for CB (26.5 cm) and the 16-h photoperiod continuously for CP (25.4 cm). Fewest days to anthesis, 134 days for CB and 145 days for CP, resulted from the 16-h photoperiod continuously and greatest (216 days) from the 8-h photoperiod continuously. LH plants had a high flowering percentage (99.6%) regardless of photoperiod or transplant stage. Stem lengths were longest (60.1 cm) for LH plants exposed to the 16-h photoperiod continuously and shortest (46.2 cm) when exposed to the 8-h photoperiod continuously. LH exhibited a curvilinear response for days to anthesis with the 16-h final photoperiod producing the shortest crop time (166 days) and the 12-h final photoperiod producing the longest crop time (182 days). The experiment was repeated in 1998/1999 with high intensity discharge (HID) lighting during the initial photoperiod which increased plant quality.