Search Results
The widely observed reduction in photosynthetic (Pn) capacity following long-term exposure to elevated CO2 is believed to result from an imbalance in source–sink status. We hypothesized that nitrogen fixation in root nodules would provide a strong sink for photosynthate and lead to a sustained positive photosynthetic response to elevated CO2. Bean plants (Phaseolus vulgaris L., cv Redkloud) were grown in poly chambers at one of four combinations of temperature (35/21 or 26/15°C day/night), and CO2 (350 or 700 ppm). Half the plants in each chamber were inoculated with Rhizobium and fertilized with a complete nutrient solution lacking nitrogen; control plants received a similar solution with nitrogen. Total nitrogenase activity (acetylene reduction assay; 8 weeks after planting) of excised whole root systems was stimulated (up to 4-fold) by elevated CO2, but this response was only significant for 26/15°C-grown plants. Inoculated plants also accumulated more biomass (10%) than control plants. Nodule abundance and size were significantly higher in high CO2-grown plants than ambient CO2 plants, but the Pn capacity of inoculated plants was only slightly greater than that of control plants. Averaged across other treatments, high CO2-grown plants accumulated more biomass (42%) and had higher Pn rates (50%) than ambient CO2 plants. Treatment effects on leaf carbohydrate levels and Pn acclimation to CO2 were not consistent. The results suggest that the higher total nodule activity was due to increased nodule number and size in proportion with increased plant size under high CO2, rather than an increase in nitrogenase activity per nodule. It is also evident that plants with symbiotic nitrogen fixation capability can benefit from elevated CO2, even with reduced input of inorganic nitrogen.
Maximum CO2 assimilation rates (ACO2) in citrus are not realized in environments with high irradiance, high temperatures, and high leaf-to-air vapor pressure differences (D). We hypothesized that moderate shading would reduce leaf temperature and D, thereby increasing stomatal conductance (g s) and ACO2. A 61% reduction in irradiance under aluminum net shade screens reduced midday leaf temperatures by 8 °C and D by 62%. This effect was prominent on clear days when average midday air temperature and vapor pressure deficits exceeded 30 °C and 3 kPa. ACO2 and gs increased 42% and 104%, respectively, in response to shading. Although shaded leaves had higher gs, their transpiration rates were only 7% higher and not significantly different from sunlit leaves. Leaf water use efficiency (WUE) was significantly improved in shaded leaves (39%) compared to sunlit leaves due to the increase in ACO2. Early in the morning and late afternoon when irradiance and air temperatures were low, shading had no beneficial effect on ACO2 or other gas exchange characteristics. On cloudy days or when the maximum daytime temperature and atmospheric vapor pressure deficits were less than 30 °C and 2 kPa, respectively, shading had little effect on leaf gas exchange properties. The results are consistent with the hypothesis that the beneficial effect of radiation load reduction on ACO2 is related to improved stomatal conductance in response to lowered D.
Effects of foliar sprays of a kaolin clay particle film (Surround WP) on leaf temperature (Tlf), net gas exchange, chlorophyll fluorescence and water relations of sun-exposed leaves on field-grown grapefruit trees (Citrus paradisi L.) were studied during Summer and Fall 2001. Trees were sprayed twice a week for 3 weeks with aqueous suspensions of kaolin (Surround) at 60 g·L-1. Physiological effects of kaolin application were most prominent around midday on warm sunny days than in mornings, evenings or cloudy days. Kaolin sprays increased leaf whiteness (62%), reduced midday leaf temperature (Tlf; ≈3 °C) and leaf to air vapor pressure differences (VPD; ≈20%) compared to water-sprayed control leaves. Midday reductions in Tlf and VPD were accompanied by increased stomatal conductance (gs) and net CO2 assimilation rates (ACO2) of kaolin sprayed leaves, suggesting that gs might have limited ACO2 in water-sprayed control leaves. Midday photoinhibition of photosynthesis was 30% lower in kaolin-sprayed leaves than in control leaves. Midday water use efficiency (WUE) of kaolin-sprayed leaves was 25% higher than that of control leaves. However, leaf transpiration and whole-tree water use were not affected by kaolin film sprays. Increased WUE was therefore, due to higher ACO2. Leaf intercellular CO2 partial pressures (Ci) were similar in control and kaolin-sprayed leaves indicating that stomatal conductance was not the major cause of reduced ACO2. These results demonstrate that kaolin sprays could potentially increase grapefruit leaf carbon uptake efficiency under high radiation and temperature stress.
Average global surface temperatures are predicted to rise due to increasing atmospheric CO2 and other greenhouse gases. Attempts to predict plant response to CO2 must take into account possible temperature effects on phenology and reproductive sink capacity for carbohydrates. In this study, we investigated the effects of atmospheric CO2 partial pressure [35 Pa ambient CO2 (aCO2) vs. 70 Pa elevated CO2 (eCO2)] and temperature (26/15 vs. 35/21 °C day/night) on short- and long-term net CO2 assimilation (An) and growth of red kidney bean (Phaseolus vulgaris). During early vegetative development [14-31 days after planting (DAP)], An, and relative growth rate (RGR) at eCO2 were significantly greater at the supra-optimum (35/21 °C) than at the optimum (26/15 °C) temperature. At 24 DAP, the CO2 stimulation of An by eCO2 was 49% and 89% at optimum and supra-optimum temperature, respectively, and growth enhancement was 48% and 72% relative to plants grown at aCO2. This high temperature-induced growth enhancement was accompanied by an up-regulation of An of eCO2-grown plants. In contrast, during later reproductive stages (31-68 DAP) the eCO2 stimulation of An was significantly less at the supra-optimum than at optimum temperature. This was associated with reduced seed set, greater leaf carbohydrate accumulation, and down-regulation of An at the higher temperature. At final harvest (68 DAP), the eCO2 stimulation of total dry weight was 31% and 14% at optimum and supra-optimum temperature respectively, and eCO2 stimulation of seed dry weight was 39% and -18% at optimum and supra-optimum temperature, respectively. These data indicate substantial shifts in the response to eCO2 during different phenological stages, and suggest that impaired reproductive development at high temperature could reduce the potential for CO2 stimulation of photosynthesis and productivity in bean and possibly other heat-sensitive species.
Netted muskmelon [Cucumis melo L. (Reticulatus Group)] fruit quality (ascorbic acid, β-carotene, total free sugars, and soluble solids concentration (SSC)) is directly related to plant potassium (K) concentration during fruit growth and maturation. During reproductive development, soil K fertilization alone is often inadequate due to poor root uptake and competitive uptake inhibition from calcium and magnesium. Foliar applications of glycine-complexed K during muskmelon fruit development has been shown to improve fruit quality, however, the influence of organic-complexed K vs. an inorganic salt form has not been determined. This glasshouse study investigated the effects of two K sources: a glycine-complexed K (potassium metalosate, KM) and potassium chloride (KCl) (both containing 800 mg K/L) with or without a non-ionic surfactant (Silwet L-77) on melon quality. Orange-flesh muskmelon `Cruiser' was grown in a glasshouse and fertilized throughout the study with soil-applied N–P–K fertilizer. Starting at 3 to 5 d after fruit set, and up to 3 to 5 d before fruit maturity at full slip, entire plants were sprayed weekly, including the fruit, with KM or KCl with or without a surfactant. Fruit from plants receiving supplemental foliar K had significantly higher K concentrations in the edible middle mesocarp fruit tissue compared to control untreated fruit. Fruit from treated plants were also firmer, both externally and internally, than those from non-treated control plants. Increased fruit tissue firmness was accompanied by higher tissue pressure potentials of K treated plants vs. control. In general, K treated fruit had significantly higher SSC, total sugars, total ascorbic acid, and β-carotene than control fruit. Fall-grown fruit generally had higher SSC, total sugars, total ascorbic acid and β-carotene concentrations than spring-grown fruit regardless of K treatment. The effects of surfactant were not consistent but in general, addition of a surfactant tended to affect higher SSC and β-carotene concentrations.
Urea solutions, with or without non-ionic (X-77) and organosilicone (L-77) surfactant, were applied to Citrus leaves and isolated cuticles to examine adjuvant effects on urea uptake and leaf net gas exchange. When compared to X-77, L-77 exhibited superior features as a surfactant, resulting in smaller contact angles of droplets deposited on teflon slide. Both L-77 and X-77 had a strong effect on penetration rate of urea within first 20 min of experiment. Effect of L-77 on urea penetration rate decreased quickly within next 20 min, whereas the effect of X-77 was sustained over a 24-h period following application. When compared to solution of urea alone, addition of X-77 to urea resulted in significant increase of the total amount of urea that penetrated the cuticles. The effect of L-77 was smaller, although the total amount of urea that penetrated the cuticles within a 4-day period was similar for both surfactants. Solutions of either urea alone, urea+L-77 and urea+X-77, or L-77 alone, induced a negative effect on net CO2 assimilation (ACO2) for 4 to 24 h after they were sprayed onto leaves. X-77, when applied alone, had no effect on ACO2. Scanning electron microscopy revealed that 1 h after application, leaf surfaces treated with X-77 appeared to be heavily coated, as opposed to those treated with L-77, which appeared similar to untreated control leaves.
Muskmelonfruit[Cucumis melo L. (Retiulatus Goup)] sugar content is related to potassium (K)-mediated phloem loading and unloading of sucrose into the fruit. During fruit growth and maturation, soil fertility is often inadequate (due to poor root uptake) to satisfy the demand for K. Potassium uptake also competes with the uptake of Ca and Mg, two essential minerals needed for melon fruit membrane structure, function and postharvest shelf-life. Supplemental foliar-applied K could alleviate this problem especially during the critical fruit growth/maturation period. We conducted experiments to determine the effects of timing of supplemental foliar K applications on fruit quality and health attributes of orange-flesh muskmelon `Cruiser'. Plants were grown in a greenhouse and fertilized with a regular soil-applied N–P–K fertilizer throughout the study. Entire plants, including the fruit were sprayed with a solution of a novel glycine amino acid-complexed potassium (Potassium Metalosate, 24% K), diluted to 4.0 mL·L-1, 3 to 5 d after anthesis (fruit set) and up to 3 to 5 d prior to abscission (full-slip). Three sets of plants were either sprayed weekly, or bi-weekly or not sprayed (control). Fruit from plants receiving supplemental foliar K matured on average 2 days earlier, and had significantly higher fruit K concentrations, soluble solids, total sugars, ascorbic acid (vitamin C), beta-carotene, and were firmer than fruit from control plants. In general, there were few differences in fruit quality aspects between bi-weekly or weekly treatments. The data demonstrate that fruit quality and marketability as well as some of the developmentally induced K deficiency effects can be alleviated through foliar nutrition.
Muskmelon [Cucumis melo L. (Reticulatus Group)] fruit sugar content is directly related to potassium (K)-mediated phloem transport of sucrose into the fruit. However, during fruit growth and maturation, soil fertilization alone is often inadequate (due to poor root uptake and competitive uptake inhibition from calcium and magnesium) to satisfy the numerous K-dependent processes, such as photosynthesis, phloem transport, and fruit growth. Experiments were conducted during Spring 2003 and 2004 to determine if supplemental foliar K applications during the fruit growth and maturation period would alleviate this apparent inadequate K availability in orange-flesh muskmelon `Cruiser'. Plants were grown in a greenhouse and fertilized throughout the study with a soil-applied N-P-K fertilizer. Flowers were hand pollinated and only one fruit per plant was allowed to develop. Starting at 3 to 5 days after fruit set, and up to 3 to 5 days prior to fruit maturity (full slip), entire plants, including the fruit, were sprayed with a glycine amino acid-complexed potassium (potassium metalosate, 24% K) solution, diluted to 4.0 mL·L-1. Three sets of plants were sprayed either weekly (once per week), biweekly (once every 2 weeks) or not sprayed (control). Fruit from plants receiving supplemental foliar K matured on average 2 days earlier than those from control plants. In general, there were no differences in fruit maturity or quality aspects between the weekly and biweekly treatments except for fruit sugar and beta-carotene concentrations, which were significantly higher in the weekly compared to the biweekly or control treatments. Supplemental foliar K applications also resulted in significantly firmer fruit with higher K, soluble solids, total sugars, ascorbic acid (vitamin C) and beta-carotene concentrations than fruit from control plants. These results demonstrate that carefully timed foliar K nutrition can alleviate the developmentally induced K deficiency effects on fruit quality and marketability.