Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: John K. Moulton x
Clear All Modify Search

Helianthus verticillatus Small (whorled sunflower) is a federally endangered plant species found only in the southeastern United States that has potential horticultural value. Evidence suggests that H. verticillatus is self-incompatible and reliant on insect pollination for seed production. However, the identity of probable pollinators is unknown. Floral visitors were collected and identified during Sept. 2017 and Sept. 2018. Thirty-six species of visitors, including 25 hymenopterans, 7 dipterans, 2 lepidopterans, and 2 other insect species, were captured during 7 collection days at a site in Georgia (1 day) and 2 locations in Tennessee (6 days). Within a collection day (0745–1815 hr), there were either five or six discrete half-hour collection periods when insects were captured. Insect visitor activity peaked during the 1145–1215 and 1345–1415 hr periods, and activity was least during the 0745–0845 and 0945–1015 hr periods at all three locations. Visitors were identified by genus and/or species with morphological keys and sequences of the cox-1 mitochondrial gene. The most frequent visitors at all sites were Bombus spp. (bumblebees); Ceratina calcarata (a small carpenter bee species) and members of the halictid bee tribe Augochlorini were the second and third most common visitors at the two Tennessee locations. Helianthus pollen on visitors was identified by microscopic observations and via direct polymerase chain reaction of DNA using Helianthus-specific microsatellites primers. Pollen grains were collected from the most frequent visitors and Apis mellifera (honeybee) and counted using a hemocytometer. Based on the frequency of the insects collected across the three sites and on the mean number of pollen grains carried on the body of the insects, Bombus spp., Halictus ligatus (sweat bee), Agapostemon spp., and Lasioglossum/Dialictus spp., collectively, are the most probable primary pollinators of H. verticillatus.

Open Access

Cross-species transferability of simple sequence repeats (SSRs) is common and allows SSRs isolated from one species to be applied to closely related species, increasing the use of previously isolated SSRs. The genus Cornus consists of 58 species that are ecologically and economically important. SSRs have previously been isolated from C. florida and C. kousa. In this study, 36 SSRs were tested on taxa from 18 Cornus species and hybrids for cross-species transferability and genetic diversity was calculated for each locus using polymorphism information content (PIC). Cross-species transferability of SSR loci was higher in more closely related species and PIC values were high. Evidence was found for conserved primer sites as determined by the amplification of SSR loci in the taxa examined. Polymerase chain reaction products were cloned and sequenced for three SSR loci (CF48, CF59, and CF124) and all individuals sequenced contained the appropriate repeat. Phylogenetic relationships of 14 Cornus species were inferred using nucleotide sequences of SSR locus CF48. The most parsimonious tree resulting from this analysis was in concordance with phylogenies based on matK and internal transcribed spacer sequences. The SSR loci tested in this study will be useful in future breeding, population, and genetic studies within Cornus.

Free access