Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: John Ertle x
Clear All Modify Search
Authors: and

Indoor vertical farms that grow lettuce commonly encounter tipburn, which is an environmental disorder caused by calcium (Ca) deficiency during the late head-forming stages of lettuce. Characterized by marginal leaf necrosis of young expanding leaves, tipburn reduces marketable yield because of the appearance of these necrotic lesions. Lowering the daily light integral (DLI) to slow the plant growth rate has been a widely practiced approach to avoid tipburn in lettuce, but it largely reduces the final yield. We assessed the effect of lowering the DLI only during the end of production, which is a critical time because it is when tipburn is typically observed. Lettuce plants of tipburn-sensitive cultivars Klee and Rex were grown under a tipburn-inducing condition in growth chambers. Sixteen days after transplanting, the DLI was varied to 100% (L100), 85% (L85), 70% (L70), or 55% (L55) of the original 17.4 mol⋅m−2⋅d−1 to grow the final 12 d. At harvest, tipburn severity was reduced by lowering the DLI, but the magnitude of reduction was cultivar-specific. For ‘Klee’, the lowest tipburn severity was found at L55 (8% ± 2.1% of leaves), but the severity was similar for all other DLI levels (33% ± 3.5% of leaves). For ‘Rex’, tipburn severity was highest in the control (L100; 14% ± 2.8% of leaves) but similar for all other DLI levels (2% ± 0.9% of leaves). Reducing the end-of-production DLI to 55% resulted in a linear decrease in yield by up to 22% and 26% for ‘Klee’ and ‘Rex’, respectively. When the increase in marketable yields and decrease in the electricity cost were considered, decreasing the end-of-production DLI yielded a profitable contribution only for ‘Klee’ (L55). For moderately tipburn-sensitive ‘Rex’, revenue losses attributable to the yield decrease were too large to justify this approach of end-of-production reduced DLI.

Open Access
Authors: and

Low evaporative conditions in indoor (vertical) farms reduce mass-flow–driven transport of calcium (Ca), resulting in tipburn of lettuce. Lettuce tipburn symptoms develop along the margins of young leaves and the growing shoot tip, where necrotic tissue forms as a result of Ca deficiency. For indoor farms, lettuce tipburn poses a major economic risk because the crop becomes unmarketable as a result of its appearance. Difference in tipburn sensitivity among cultivars has been thought to be related to differences in growth rate, morphology, or anthocyanin production, whereas most commercial lettuce cultivars have been known to express tipburn symptoms in the indoor farm setting. We created a tipburn-inducing growing condition in walk-in growth chambers that limits plant potential transpiration rate while achieving relatively high growth rates, and examined 10 commercial cultivars selected for tipburn sensitivity. Selected cultivars differ in morphology (butterhead, romaine, and leafy type) and color (red or green; resulting from anthocyanin production). All cultivars expressed visually detectable tipburn symptoms 22 ± 2.6 days after transplanting, and varied tipburn rates of 7% to 41% of all leaves at the time of harvest (28 days after transplanting). Despite cultivar-specific variation, neither lettuce morphology nor anthocyanin content were significantly correlated with the incidence or severity of tipburn. However, cultivars recommended for “indoor” production by seed suppliers had less tipburn severity than those recommended for outdoor or both indoor and outdoor production systems. Although tipburn risk may vary under other environmental conditions, low evaporative conditions in this experiment caused tipburn symptoms in all tested cultivars at varying degrees of severity. Cultivar-specific average yield and tipburn severity were not correlated with the Ca concentrations in the inner leaves, suggesting that the amount of tissue Ca required to prevent tipburn is cultivar specific and not related to yield. Our selected tipburn-inducing condition was found to be effective in comparing tipburn sensitivity of lettuce cultivars for indoor farm settings, and similar fast-growing but low-evaporative conditions should be used to assess cultivars for indoor farm production.

Open Access

Grafted watermelon plants available in the United States are typically transported for a long distance from a specialized nursery to the production field. To investigate the effects of chilling stress during transportation on the early plant growth and development, grafted and nongrafted ‘Tri-X-313’ seedless watermelon (Citrullus lanatus) seedlings were subjected to low-temperature treatments applied over a 72-hour period. The first experiment exposed grafted and nongrafted seedlings to 0, 6, 12, 24, or 48 hours of 1 °C chilling, and then were moved to a 12 °C growth chamber for the remainder of the chilling treatment period. The second experiment exposed nongrafted seedlings to seven different combinations of chilling duration (0, 24, 32, 41, 44, or 48 hours) to create varied chilling degree hours (CDH) at different temperatures (between −0.4 °C and 1.2 °C). After 72 hours, seedlings were transplanted in pots filled with a commercial substrate in a greenhouse to evaluate the early plant growth and floral development. Each experiment had two repeats (spring and summer) with a randomized complete block design (n = 10). Although greater exposure to chilling negatively affected visual quality and photosynthetic capacity [measured by chlorophyll fluorescence parameter, variable fluorescence/maximum fluorescence (Fv/Fm)] in both repeats, delay in flowering after transplanting was significant in spring only and increased with increasing CDH (up to 6 days with 48 hours of 1 °C exposure). Grafting was found to mitigate the degree of flowering delay when the same chilling exposure was applied. When chilling temperatures were varied, visual damage of leaves, decrease in Fv/Fm, and delays in female flower development were best correlated with CDH at a base temperature of 15 °C, 3 °C, and 4 °C, respectively. Our experiments and further analyses with available literature data suggest that 50 to 70 CDH 4 [CDH with base temperature (BT) = 4 °C] seems to be a critical threshold to cause significant delay in female flower development (3.5 days for grafted and 1.3 days for nongrafted plants). Therefore, if temperatures lower than 4 °C are expected during transportation of seedlings, we suggest mitigation measures be taken so that CDH 4 do not reach greater than 50 degree hours.

Open Access