Search Results
With growing interest in food system solutions to address poor health outcomes related to preventable chronic diseases, organizations and researchers are examining the value of community gardens as interventions to promote individual and community health. Research suggests that participation in community gardens improves access to fresh, healthy foods and increases fruit and vegetable consumption. In addition to these physical benefits, research also documents a variety of social and communal benefits, by expanding social capital, stabilizing neighborhoods, and cultivating relationships. Unfortunately, most of these studies focus on a specific case, cross case, or intervention studies within a geographically specific locale. Learning lessons from successful community garden programs can be difficult because community gardens often rely on the synergy of a complex network of support agencies that assist in various technical and educational capacities. The purpose of the study was to demonstrate the use of a framework for program development and evaluation that stakeholders, including extension, can adopt to show program outcomes. The framework used a Delphi approach with a diverse panel of community garden stakeholders to reach consensus about program outcomes. The study demonstrated that the panel could reach consensus on a variety of short-, medium-, and long-term outcomes.
Use of colored shade nets has shown benefits in bell pepper and other horticultural crops. There is still, however, limited information on plant growth and physiology of bell pepper crop grown under colored shade nets. The objective was to determine the effects of colored shade nets on plant growth, leaf gas exchange, and leaf pigments of field-grown bell pepper. Experimental design was a randomized complete block with four replications and five shade treatments (black, red, silver, and white nets, and an uncovered control). Mean and maximal air temperature and midday root zone temperature (RZT) were highest in the unshaded treatment. Differences in air temperatures between shade net treatments were smaller compared with the differences in RZT between treatments. Plant fresh weight and stem diameter were reduced in the unshaded treatment, and there were no plant fresh weight and stem diameter differences among shade nets. The incidence of Phytophthora blight (caused by Phytophthora capsici) was greatest in the unshaded treatment. Leaf stomatal conductance (g S) and photosystem II efficiency were reduced and leaf temperature increased in unshaded conditions. Leaf net photosynthesis, g S, internal CO2, and PSII efficiency decreased with increasing leaf temperature. Differences in leaf temperature among shade net treatments were because of differences in solar radiation captured by leaves. Leaf total carotenoids were lowest in unshaded conditions and there were no differences in total carotenoids among the shade nets. Chlorophyll a concentration and chlorophyll a/b ratio was lowest in unshaded conditions. Leaf total phenols, flavonoids, and cupric reducing antioxidant capacity (CUPRAC) values were highest in red net and in unshaded conditions. Trolox equivalent antioxidant capacity (TEAC) values were highest in red net and lowest in silver net. In conclusion, compared with unshaded conditions, shade nets resulted in improved bell pepper plant growth and leaf gas exchange. These responses were due primarily to the reduced leaf and root zone temperatures under shaded conditions, regardless of the color of shade net. The differences in plant growth and function due to color of shade net were inconsistent or minor for most of the plant variables measured.
Colored shade nets may affect plant growth and fruit yield of horticultural crops. The understanding of how colored shade nets influence plants, however, is far from complete. The objective of this study was to determine the effects of colored shade nets on bell pepper fruit yield, postharvest transpiration, color, chemical composition, and antioxidant capacity. The experiment was conducted in Tifton, GA, during the spring of 2015 and 2016. The experimental design was a randomized complete block with four replications and five colored shade net treatments (black, red, silver, and white nets, and an unshaded control). The nets were placed on the top of wooden rectangular structures (15 m wide × 6 m long × 5 m high), leaving the sides of the structures uncovered. Results showed that in both 2015 and 2016, marketable and total fruit number, yield, and individual fruit weight were reduced under the unshaded treatment. There were inconsistent differences in marketable and total fruit number, yield, and individual fruit weight among colored shade nets. Postharvest fruit transpiration and skin permeance were also reduced in unshaded conditions, and no differences were found among colored shade nets. Fruit color L* and b* values were highest, and a* value was lowest in unshaded conditions. Fruit soluble solids, total phenols, flavonoids, and antioxidant capacity [Cupric Reducing Antioxidant Capacity (CUPRAC) and Trolox Equivalent Antioxidant Capacity (TEAC)] responded differently among colored shade nets in the 2 years. Total phenols, flavonoids, and TEAC, however, were among the highest in unshaded conditions. In conclusion, results of the present study support previous findings that shade nets increase fruit yield and quality in bell pepper compared with fruit produced in unshaded conditions. Nevertheless, there were no consistent differences in fruit total and marketable yield and postharvest fruit transpiration and chemical composition of fruit produced under colored shade nets.