Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: John C. Sorochan x
Clear All Modify Search
Full access

John M. Kauffman, John C. Sorochan and Dean A. Kopsell

Thatch-mat and organic matter (OM) accumulation near the putting green soil surface impacts soil physical properties and turf performance. Excessive thatch and OM can encumber infiltration of water and oxygen into the soil profile and slow drainage of excess water away from the putting surface. Proper sampling of thatch-mat depths and OM contents is vital for management of putting green turf; therefore, a study was performed in Knoxville, TN, to derive proper sampling procedures of these important parameters using ‘TifEagle’ and ‘Champion’ bermudagrass (Cynodon dactylon × C. transvaalensis), ‘SeaDwarf’ seashore paspalum (Paspalum vaginatum), and ‘Diamond’ zoysiagrass (Zoysia matrella). ‘TifEagle’ and ‘Champion’ accumulated thatch-mat to a greater depth than ‘SeaDwarf’ and ‘Diamond’. However, ‘SeaDwarf’ had a higher OM content than ‘Diamond’ and both had higher OM contents than ‘TifEagle’ and ‘Champion’. Data generated from sampling procedures indicate that previous studies often undersampled plots for thatch-mat depth; however, previous sampling procedures have not traditionally undersampled plots for OM. Data in this study provide a range of confidence and minimum detectable difference levels which may allow future researchers to more accurately sample ‘TifEagle’, ‘Champion’, ‘SeaDwarf’, and ‘Diamond’ putting green plots for thatch-mat depth and OM content.

Free access

Travis C. Teuton, John C. Sorochan, Christopher L. Main and Thomas C. Mueller

The transition zone is one of the hardest places to maintain high-quality turfgrasses, and the overall research objective was to determine best management practices to establish new turf cultivars in this zone. Hybrid bluegrasses (P. arachnifera Torr. × P. pratensis L.) have been bred for heat and drought tolerance and may offer a new alternative to other turfgrasses. The specific cultivars examined in this research were ‘Thermal Blue®’ and ‘Dura Blue®’. Experiments were conducted during 2003, 2004, and 2005 in Knoxville, TN. ‘Thermal Blue’ was seeded at 50, 100, 150, 200, and 250 kg·ha−1 of seed. ‘Thermal Blue's’ ideal seeding rate was between 100 and 150 kg·ha−1 of seed in 2003 and 50 kg·ha−1 in 2004. ‘Thermal Blue’ was also seeded in January, April, July, and September of each year with 100 kg·ha−1 of seed. All seeding dates took ≈11 months to become well established. However, July seeding produced poor turf quality (less than 6) and was the only seeding date deemed unacceptable. ‘Thermal Blue’ and ‘Dura Blue’ were fertilized with ammonium nitrate at 100, 200, and 300 kg N/ha/year and urea formaldehyde at 200 and 300 kg N/ha/year starting in March of each year. These treatments were maintained at 2-, 3.5-, and 5-cm mowing heights. ‘Thermal Blue’ had higher quality evaluations and produced more clippings than ‘Dura Blue’ throughout the year. Higher fertility regimens increased quality evaluations in April but decreased quality evaluations in October. Increasing the mowing height improved turf quality and decreased biomass production for both grasses. A proposed optimum method for establishment included seeding ‘Thermal Blue’ in April at 150 kg·ha−1 and fertilizing with 300 kg·ha−1 of nitrogen and them mowing at 5-cm height. ‘Thermal Blue’ and ‘Dura Blue’ are adapted for the transition zone, but summer heat stress may cause turf quality decrease in the fall.

Free access

Travis C. Teuton, John C. Sorochan, Christopher L. Main, Thomas J. Samples, John M. Parham and Thomas C. Mueller

‘Dura Blue’ and ‘Thermal Blue’ hybrid bluegrass have been selected for heat and drought tolerance. These grasses offer alternatives to traditional Kentucky bluegrass and tall fescue in the transition zone. Experiments were conducted in two locations during 2003 and 2004 at the University of Tennessee in Knoxville, Tenn. Nitrogen (N) was applied at 50, 150, or 300 kg·ha−1 N per year to ‘Apollo’ Kentucky bluegrass, ‘Dura Blue’, and ‘Thermal Blue’ hybrid bluegrass, and ‘Dynasty’ and ‘Kentucky 31’ tall fescue. The main effects of turfgrass and N were significant for color and quality observations. However, their interactions were not significant; therefore, only the main effects are shown. Acceptable turfgrass color (>6) and quality (>6) was observed for all varieties in May, August, and November. All N regimens showed acceptable turfgrass color and quality. However, 150 kg·ha−1 N per year was required to achieve optimum color and quality. ‘Kentucky 31’ produced higher clipping dry weights when N was applied at 50 kg·ha−1 per year than the other varieties. Nitrogen applied at 150 and 300 kg·ha−1 per year on ‘Kentucky 31’ and ‘Thermal Blue’ produced higher clipping dry weights than the other varieties. ‘Dynasty’ and ‘Kentucky 31’ had similar brown patch incidences at each nitrogen level. Increases in brown patch incidence occurred as N levels decreased from 300 (21%) to 50 kg·ha−1 per year (31%) for ‘Dynasty’ and ‘Kentucky 31’. Dollar spot incidence occurred on all bluegrass varieties from 7% to 24%. However, dollar spot decreased with increased N fertility. All turfgrass species tested were acceptable for use in the transition zone.

Free access

Mark G. Lefsrud, John C. Sorochan, Dean A. Kopsell and J. Scott McElroy

Heat-tolerant bluegrass varieties were developed to resist dormancy and retain pigmentation during heat stress events. The objective of this study was to investigate the influence of grass species, nitrogen (N) fertilization, and seasonality on the accumulation patterns of lutein, β-carotene, and chlorophyll a and b in the leaf tissues of turfgrass. The heat-tolerant bluegrass cultivars Dura Blue and Thermal Blue (Poa pratensis L. × Poa arachnifera Torr.), Apollo kentucky bluegrass (Poa pratensis L.), and Kentucky 31 tall fescue (Festuca arundinacea Schreb.) were compared for the accumulation of plant pigments. Evaluations were conducted over 2 consecutive years (Years 4 and 5 after establishment) during two different seasons (spring and summer) and under varying N fertilization. Fertilizer applications of 5, 14, and 27 g N/m2/year resulted in a significant positive correlation for the accumulation of leaf blade lutein and chlorophyll a and b, but not for β-carotene. The accumulation of the four measured plant pigments among the grasses was significantly different with ‘Apollo’ having the largest concentration of pigments followed by ‘Dura Blue’, ‘Thermal Blue’, and finally ‘Kentucky 31’. Specifically, when comparing the cultivars Apollo and Kentucky 31, the pigment levels decreased 27%, 26%, 26%, and 23% for lutein, β-carotene, and chlorophyll a and b, respectively. The interesting observation of the analysis of the grass pigment concentrations was that the least reported heat-tolerant cultivar in our study (‘Apollo’) had the largest measured pigment concentrations.

Free access

James T. Brosnan, Adam W. Thoms, Gregory K. Breeden and John C. Sorochan

Data describing effects of plant growth regulator (PGR) applications on bermudagrass (Cynodon spp.) traffic tolerance are limited. A 2-year study was conducted evaluating effects of several PGRs on ‘Riviera’ bermudagrass (Cynodon dactylon L.) traffic tolerance. Treatments included 1) ethephon at 3.8 kg·ha−1; 2) trinexapac-ethyl (TE) at 0.096 kg·ha−1; 3) paclobutrazol at 0.28 kg·ha−1; 4) flurprimidol at 0.0014 kg·ha−1; 5) flurprimidol + TE at 0.0014 kg·ha−1 + 0.096 kg·ha−1, respectively; 6) ethephon + TE at 3.8 kg·ha−1 + 0.096 kg·ha−1, respectively; and 7) untreated control. All treatments were applied three times on a 21-d interval before trafficking. Plots were subjected to three simulated football games per week with the Cady Traffic Simulator. Traffic began 2 weeks after the last sequential application of each PGR. Turfgrass color, quality, and cover were quantified weekly using digital image analysis. Turfgrass cover measurements were used to assess traffic tolerance. Improvements in turfgrass color, quality, and cover were observed with applications of TE, ethephon + TE, and flurprimidol + TE. Turfgrass color, quality, and cover were enhanced for ethephon + TE and flurprimidol +TE compared with applications of ethephon and flurprimidol alone. Considering that no differences in turfgrass color, quality, or cover were detected among TE, ethephon + TE, and flurprimidol + TE at any time in the study, the responses observed suggest that TE may have a greater impact than other PGRs on ‘Riviera’ bermudagrass athletic field turf when applied before traffic stress. Chemical names used: rthephon (2-chloroethyl)phosphonic acid; glurprimidol {α-(1-methylethyl)-α-[4-(trifluoro-methoxy) phenyl] 5-pyrimidine-methanol}; paclobutrazol, (+/−)-(R*,R*)-β-[(4-chlorophenyl) methyl]-α-(1–1-dimethyl)-1H-1,2,4,-triazole-1-ethanol; trinexapac-ethyl [4-(cyclopropyl-[α]-hydroxymethylene)-3,5-dioxo-cyclohexane carboxylic acid ethyl ester].

Free access

Patrick A. Jones, James T. Brosnan, Gregory K. Breeden, José J. Vargas, Brandon J. Horvath and John C. Sorochan

Divoting is a common occurrence on golf courses and athletic fields. Research was conducted at the University of Tennessee Center for Athletic Field Safety (Knoxville, TN) during 2012–13 evaluating the effects of preemergence (PRE) herbicide applications on hybrid bermudagrass [C. dactylon (L.) Pers. × C. transvaalensis Burtt-Davy, cv. Tifway] divot resistance and recovery. Plots were subjected to the factorial combination of seven herbicide treatments (indaziflam at 35 and 52.5 g·ha−1; prodiamine at 840 g·ha−1; pendimethalin at 3360 g·ha−1; dithiopyr at 560 g·ha−1; oxadiazon at 3360 g·ha−1; non-treated control) and three divot timings [1, 2, and 3 months after herbicide treatment (MAT)]. Rates were based on label recommendations for preemergence crabgrass (Digitaria spp.) control. Herbicides were applied on 15 Mar. 2012 and 2013. Divots were generated using a weighted pendulum apparatus designed to impart 531 J of impact energy to the turf sward with a golf club. Divot resistance was quantified by measuring divot volume at each timing while divot recovery was quantified by measuring turf cover in the divot scar using digital image analysis. All herbicide-treated plots produced divots with volumes ≤ the non-treated control. In 2013, volumes were greater for divots produced 1 MAT (215 cm3) than those created 2 MAT (191 cm3) or 3 MAT (157 cm3). No differences in divot recovery were detected as a result of herbicide treatment in either year. Under the conditions of this study, applications of PRE herbicides at labeled rates did not affect divot resistance or recovery.

Chemical names: N-[(1R,2S)-2,3-dihydro-2,6-dimethyl-1H-inden-1-yl]-6-(1-fluoroethyl)-1,3,5-triazine-2,4-diamine (indaziflam), 2,4 dinitro-N3,N3-dipropyl-6-(trifluoromethyl)-1,3-benzenediamine (prodiamine), N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine (pendimethalin), S,S-dimethyl 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridinedicarbothioate (dithiopyr), 3-[2,4-dichloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2-(3H)-one (oxadiazon)

Full access

William D. Haselbauer, Adam W. Thoms, John C. Sorochan, James T. Brosnan, Brian M. Schwartz and Wayne W. Hanna

Hybrid bermudagrass (Cynodon dactylon × C. transvaalensis) varieties such as Tifway and TifSport commonly are used on athletic fields. Several experimental hybrid bermudagrasses have been recently developed. However, data describing the performance of these bermudagrasses under simulated athletic field traffic are limited. A 2-year study was conducted evaluating the traffic tolerance of five experimental (2004-76, 2004-83, 2004-78, Tift 11, and 2004-77) and three commercially available (‘Tifway’, ‘TifSport’, and ‘TifGrand’) hybrid bermudagrasses. These bermudagrasses were subjected to two mowing (mowing at 0.87 inches or mowing at 0.87 inches + grooming to a 0.10-inch depth) and overseeding [no overseeding or overseeding with perennial ryegrass (Lolium perenne) at 12 lb/1000 ft2 of pure live seed] regimes. Simulated traffic tolerance using the Cady traffic simulator (CTS) was quantified using measurements of turfgrass cover with digital image analysis (DIA). Experimental bermudagrasses Tift 11 and 2004-76 and the commercially available variety TifGrand yielded turfgrass cover values greater than or equal to ‘Tifway’, a commonly used variety, on all rating dates each year. Experimental bermudagrass 2004-83 yielded the lowest turfgrass cover values on each date. Findings suggest that ‘TifGrand’, 2004-76, and Tift 11 may be suitable for use on athletic fields.