Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: John B. Bamberg x
  • All content x
Clear All Modify Search
Free access

Sandra E. Vega-Semorile, John B. Bamberg, and Jiwan P. Palta

Frost damage to the foliage is a common problem where potatoes are grown, and results in significant reductions in tuber yield. Frost injury also limits the cultivation of high-yielding S. tuberosum cultivars in the mountain regions of Central and South America, where potato is a staple crop. Recent studies have shown that some wild potato species possess a high degree of non-acclimated frost tolerance (growing in normal conditions) as well as high cold acclimation capacity (able to increase frost tolerance upon exposure to cold). Natural frosts affecting potatoes are of two types: a) late spring or early fall frost, where the minimum temperature during the frost episode can be very low; b) frost during the growing season, where the minimum temperature during the frost episode is not as low. It is expected that potato species able to acclimate rapidly would survive better from the latter type of frosts, whereas species having higher acclimation capacity might have a great chance to survive better from the former type of frosts. The objective of this study was to find out if there is genetic variability for the speed of acclimation among different tuber-bearing wild potato species. The species used were: S. acaule, S. commersonii, S. megistacrolobum, S. multidissectum, S. polytrichon, S. sanctae-rosae, and S. toralapanum. Relative freezing tolerance of these species was measured during cold acclimation. Preliminary results suggest that there are differences in the speed of acclimation among these species. We found that these species can be divided into four groups: i) non-acclimators; ii) rapid acclimators, with low to medium acclimation capacity; iii) slow acclimators, with low to medium acclimation capacity; iv) slow acclimators, with high acclimation capacity. We plan to use this information in our breeding program aimed at improving the freezing tolerance of potatoes.

Free access

Laurie S. Weiss, John B. Bamberg, and Jiwan P. Palta

Solanum acaule (acl) and Solanum commersonii (cmm) represent the extremes of frost tolerance and cold acclimation ability among potato species. We have combined these species with cultivated S. tuberosum (tbr) to develop a potato with desired tuber traits and a high degree of frost tolerance. For this purpose diploid cmm was made 4x and crossed with naturally 4x acl. The F1 and F2 appear to exhibit hybrid vigor for vine growth for flowering, but none had frost tolerance greater than the parents. The F1 and F2 were crossed with S. tuberosum ssp. andigena and Katahdin via 2n eggs resulting in 6x 3-way hybrids. These hybrids were evaluated both in the field and laboratory for frost tolerance and acclimation ability. Results showed an increase of 1°C of frost tolerance and 2°C increase in cold acclimation capacity in the hybrids as compared to the sensitive tbr parents. Some of the 6x (3-way) hybrids produced significant tubers but yield and earliness needs much improvement. These results demonstrate that it should be possible to move both non acclimated freezing tolerance and cold acclimation ability from wild to cultivated species and offer exciting opportunities to enhance potato production in frost prone areas in the world.

Supported by USDA/NRI grant 91-3700-6636 to J.P.P. and J.B.B..

Free access

Sandra E Vega, Jiwan P. Palta, and John B. Bamberg

Frost injury limits the cultivation of potatoes in many regions around the world. We are currently studying the factors that contribute to frost survival in potato in an attempt to improve its frost tolerance. Wild potato species have been distinguished for their high degree of non-acclimated frost tolerance (growing under normal conditions) and their high cold acclimation capacity (able to increase frost tolerance upon exposure to cold). Cold acclimation can be reversed upon exposure to warm temperatures (deacclimation). The ability to gain freezing tolerance rapidly in response to low temperatures as well as not being able to deacclimate rapidly in response to warm daytime temperatures would be advantageous for a plant against spring or fall freezes. Last year we presented evidence for the variability in the speed of cold acclimation among 7 wild tuber-bearing potato species (S. acaule, S. commersonii, S. megistacrolobum, S. multidissectum, S. polytrichon, S. sanctae-rosae and S. toralapanum). The same set of species was used for the present study to find out if there is also variability for the speed of deacclimation. Relative freezing tolerance of these species was measured before and after cold acclimation as well as after one day of deacclimation (exposure to warm temperatures). Our results suggest that there are differences in the speed of deacclimation among these species. We found that while some species lost near a half of their hardiness, others lost only a third or less of their hardiness after one day of deacclimation.

Free access

Yu-Kuang Chen, John B. Bamberg, and Jiwan P. Palta

Tetraploid somatic hybrids between S. tuberosum (tbr) and S. commersonii (cmm) have been produced to incorporate desirable traits such as cold hardiness from cmm into cultivated potatoes. While nonacclimated freezing tolerance (NA) of these somatic hybrids were as low as tbr fusion parent, their acclimation capacity (ACC) approximated that of the parental mean. In order to further explore the potential of using these somatic hybrids in breeding programs and to examine the segregation of genes conferring NA and ACC in somatic hybrids, progenies have been developed from either selfing somatic hybrids or crossing them with a tuberosum breeding line, Wis 231. In total, 48 selfed and 6 backcross progenies were characterized for the expression of NA and ACC. The NA derived from cmm was still poorly recovered in both sets of progenies. However, ACC did show some variation ranging from the level of sensitive fusion parent to that of the selfed parent, HA 26-5. None of the progeny had ACC as high as their cmm parent. Our results suggest that the expression of NA was suppressed by the cold sensitive genome of tbr. Thus, ACC is the form of cold tolerance from cmm, which appears to be most easily accessed though these somatic hybrids.

Free access

Sandra E. Vega, Jiwan P. Palta, and John B. Bamberg

Two major components of frost resistance are freezing tolerance in the nonacclimated state (growing in normal condition) and capacity to cold acclimate (increase in freezing tolerance upon exposure to chilling temperatures). In addition to these two major components, numerous factors contribute to frost survival. Although the rate of cold acclimation and deacclimation have been recognized as important factors contributing to frost survival, very little information about them is available. Our objective was to determine if there is variability in the rate of cold acclimation and deacclimation among tuber-bearing wild potato species: S. acaule Bitter, S. commersonii Dunal, S. megistacrolobum Bitter, S. multidissectum Hawkes, S. polytrichon Rydb., S. sanctae-rosae Hawkes, and S. megistacrolobum subsp. toralapanum (Cárdenas & Hawkes) Giannattasio&Spooner. Relative freezing tolerance of these species was measured after 0, 3, 6, 9 and 12 days of cold acclimation and after 12 and 24 hours deacclimation. Our results showed there were differences in the rates of cold acclimation and deacclimation among these species. With respect to the rate of acclimation we found these species can be divided into four groups: (i) early; (ii) late acclimators; (iii) progressive acclimators, and (iv) nonacclimators. Likewise, a wide range of cold deacclimation behavior was found. Some species showed as low a loss of 20% of their freezing tolerance, others showed as much as >60% loss after 12 hours of deacclimation. Significant deacclimation was observed in all cold acclimating species after 1 day. These results demonstrate that the rates of cold acclimation and deacclimation were not necessarily related to the cold acclimation capacity of a species. Rapid acclimation in response to low temperatures preceding a frost episode and slow deacclimation in response to unseasonably warm daytime temperatures could be advantageous for plants to survive frost events. Thus, in addition to nonacclimated freezing tolerance and acclimation capacity, it would be very desirable to be able to select for rapid acclimation and slow deacclimation abilities. Results demonstrate that variability for these two traits exists in Solanum L. (potato) species.