Search Results
Description of early post-transplant root growth will help formulate best transplanting strategies for landscape trees. In this experiment, the dynamics of early root system regeneration of sugar maple (Acer saccharum Marsh. `Green Mountain') and northern red oak (Quercus rubra L.) were determined. Field-grown 4-year-old trees were transplanted bare-root into outdoor root observation containers (rhizotrons) in Oct. 1997, Nov. 1997, or Mar. 1998. All trees were grown in the rhizotrons until Oct. 1998 and then transplanted, with minimally disturbed rootballs, to field soil and grown for an additional two years. October-transplanted trees of both species began root regeneration earlier and regenerated more roots, as judged by accumulated root length on rhizotron windows, than Nov.- or March-transplanted trees. Median date for beginning root extension for sugar maples was 48, 22, and 0 days before budbreak for October-, November-, and Marchtransplanted trees, respectively. Median date for beginning root extension for northern red oak was 4, 21, and 14 days after budbreak for October-, November-, and Marchtransplanted trees, respectively. Height and trunk diameter growth were similar for all treatments within each species for 3 years after application of treatments. Early fall transplanting will result in earlier first season post-transplant root growth for sugar maple and northern red oak. Earlier post-transplant root growth will likely increase resistance to stress imposed by harsh landscape environments.
Rapid posttransplant root growth is often a determining component of successful establishment. This study tested the effect of transplant timing on first-season root growth dynamics of bare-root Turkish hazelnut trees. Trees were either harvested and planted in the fall (F-F), harvested in the fall and planted in the spring after holding in refrigerated storage (F-S), or harvested and planted in the spring (S-S). All trees were transplanted into 51-L containers, adapted with root observation windows. Root growth began in F-F and F-S trees 1-2 weeks before spring budbreak, but was delayed in S-S trees until ≈3 weeks after budbreak. Budbreak was 6 days earlier for fall-harvested than for spring-harvested trees. No new roots were observed before spring. Root length accumulation against observation windows (RL) was delayed for S-S trees, but rate of increase was similar to F-F and F-S trees soon after growth began. Seasonal height, trunk diameter growth, and RL were similar among treatments. Surface area of two-dimensional pictures of entire rootballs was not correlated with seasonal RL.
Seasonal effects on transplant establishment of balled-and-burlapped (B&B) shade trees are not well documented. Early post-transplant root growth and above-ground growth over 3 years were therefore documented for November- and March-transplanted northern red oak (Quercus rubra L.) and willow oak (Q. phellos L.). Survival of red oak was 100% for both treatments. Survival of November- and March-transplanted willow oak was 67% and 83%, respectively. No new root growth was observed outside or within the root balls of either species upon excavation in January. However, new root growth was evident when subsamples were excavated the following April for November-transplanted trees of both species, indicating that root system regeneration of November-transplanted trees occurs in late winter and/or early spring, not late fall and/or early winter. November-transplanted red oak, but not willow oak, had grown more roots by spring bud break than March-transplanted trees. While height growth of willow oak was nearly identical between treatments after 3 years, November-transplants exhibited greater trunk diameter increase for all 3 years. Overall, season of transplant had little effect on height and trunk diameter increase of red oak, even though November-transplanted trees grew more roots prior to the first bud break following transplant. Among the willow oaks that survived, season of transplanting had little effect on height growth, but November transplanting resulted in greater trunk diameter increase. However, considering the mortality rate of November-transplanted willow oak, March may be a better time to transplant willow oak in climates similar to southwest Virginia.
The effect of fall vs. spring transplanting was tested on landscape-sized Chionanthus virginicus L. at a research farm in Blacksburg, Va. Two fall transplanting dates (11 Nov. and 1 Dec. 1994) were selected so that soil temperatures were decreasing and near 10 °C for the earlier fall date (11 Nov.) and decreasing and near 5 °C for the later fall transplanting date (1 Dec.). The spring date (14 Mar. 1995) was selected so that soil temperatures were increasing and near 5 °C. All trees were transplanted with rootballs of native soil wrapped in burlap (B&B). Fringe tree was clearly tolerant of fall transplanting. Trees transplanted on 11 Nov. had a larger leaf area 1 month after bud set the next summer and had wider canopies and more dry mass of new roots at leaf drop than trees transplanted on the other dates. Trees transplanted on 14 Mar. had less total leaf area, leaf dry mass, and lower maximum root extension into the backfill soil than trees transplanted on 11 Nov. or 1 Dec. No root growth occurred beyond the original rootball until about early July (1 month after bud set) in any treatment, suggesting that first season posttransplant irrigation regimes need to focus on rootballs, not surrounding soil areas.
Two rootball sizes as well as a nontransplanted control were randomly assigned to Acer saccharum Marsh. (sugar maple) trees in four adjacent nursery rows at Waynesboro Nurseries in Waynesboro, Va. One size (75 cm in diameter) corresponded to the American Association of Nurserymen standards. The other rootball size was 90 cm in diameter. Trees were transplanted just before bud swell or during shoot elongation. Rootball size had no effect on height, stem diameter, or twig growth, total nonstructual leaf nitrogen content (LNC), or total stem nonstructual carbohydrate (TNC). Height growth was reduced by 81%, stem diameter growth by 71%, and twig growth by 82% for trees transplanted before bud swell compared to nontransplanted trees. LNC was 25% more on transplanted trees than on nontransplanted trees, presumably due to a dilution effect. TNC was 20% higher on transplanted compared to nontransplanted trees. Growth was severely curtailed on late-transplanted trees for all characteristics measured compared to all other treatments.
Fundamental information regarding posttransplant root and shoot growth dynamics is needed to better understand transplant establishment. Seasonal patterns of root, shoot, and trunk growth of balled-and-burlapped and pot-in-pot (PIP) sugar maples (Acer saccharum Marsh.) transplanted at leaf drop (Nov. 2000), late fall (Dec. 2000), early spring (Mar. 2001), budbreak (Apr. 2001), or budset (July 2001) were measured and compared with nontransplanted field- and PIP-grown trees. All trees exhibited a pattern of maximum shoot extension, root growth, and trunk expansion in early May, late May, and early June, respectively. Maximum root growth was concurrent with early trunk expansion, both of which began when shoot growth was decreasing. Root growth was characterized by periods of abundant growth in late May and early June and less growth in summer and early fall. Transplanting at fall leaf drop, in late fall or spring, or at budbreak did not appear to radically disrupt the normal growth periodicity of sugar maple. However, transplanting at budset (summer) resulted in abundant root growth 11 weeks later than the period of maximum root growth in all other treatments. Our data indicate that similar amounts of root regeneration can be expected for irrigated July-transplanted trees as for trees transplanted in fall and spring. As well, our study provides evidence of root mortality during the winter and spring after the first posttransplant growing season. Although minimal root mortality was evident in nontransplanted field trees, substantial root mortality was evident in the nontransplanted PIP trees during winter and early spring.
Two experiments tested the effects of root pruning on growth during first-season production of pin oak (Quercus palustris Muenchh.). Experiment one tested the effect of root pruning developing radicles at 5, 10, or 15 cm (2, 4, or 6 inches) below the substrate surface. After 11 weeks, total root length was not affected by root pruning, but root-pruned seedlings had more main lateral [>2-mm (0.08-inch) diameter] roots than those that were not root pruned. Shallow pruning increased the number of main lateral roots. Experiment two tested the effect of initially producing plants in different-depth bottomless containers [5, 10, 15, or 20-cm (2, 4, 6, or 8-inch) depth] on growth after transplanting to #2 [6 L (1.6 gal)] containers. Shoot and root growth in #2 containers were lowest when plants were originally produced in 5-cm-deep containers. Plants with the greatest height and highest root:shoot ratios were obtained when plants were grown initially in 10-cm-deep containers. Predicted optimum depth of bottomless containers from regression equations ranged from 11.3 cm (4.5 inches) to 14.2 cm (5.5 inches) for the different growth parameters measured. The importance of these findings are: Pruning developing radicles of pin oak seedlings increases the number of main lateral roots but not overall root length. Growers can maximize growth in #2 containers by initially growing in 10-cm-deep bottomless containers before transplanting to #2 containers.
Humate-based products have been aggressively marketed as biostimulants that increase plant growth. Little data are available on their effect on tree establishment or their interaction with fertilizer and irrigation regimes. This experiment tested several types of biostimulants on posttransplant growth of Acer rubrum L. (red maple) and Crataegus phaenopyrum (Blume) Hara (Washington hawthorn) trees, both with and without irrigation and fertilization. Soil treatments were applied at planting as: 1) control (native backfill only); 2) compost (native backfill + yard-waste compost); 3) peat (native backfill + Canadian sphagnum peat); 4) granular humate, 100 g/tree; 5) granular humate, 200 g/tree; and 6) liquid humate +, a proprietary liquid mixture of humate, kelp extract, thiamine, and intermediate “metabolites.” Irrigation regime × soil treatment interaction was significant for red maple, but soil treatments did not increase height, stem diameter, top dry mass, or root length. For Washington hawthorn, soil treatments did not increase height, stem diameter, or root length, but top dry mass in all treatments as a group and in humate-treated trees in particular was greater than that of controls. Roots of peat-treated trees of both species were longer than those in other treatments. Granular humate applied at 200 g/tree increased total root length more than did 100 g/tree in Washington hawthorn but not in red maple. Fertilizing at planting with N at 14.5 g·m-2 had no effect on any parameter measured for either species.
Root severance during field harvesting alters the water status of a tree, resulting in water stress and reduced post-transplant growth. Two experiments, using Acer rubrum L. (red maple), determined the influence of root severance at harvest on sap flow and xylem embolism. Trees 1.5–1.8 m tall (4 years old) were utilized in the first experiment, and trees 1.2–1.5 m tall (2 years old) were utilized in the second. Sap flow sensors were installed on the 4-year-old trees prior to root severance and remained on the trees until 1 week after harvest. Within 1 day after root severance sap flow was reduced and remained lower than nontransplanted (control) trees for the remainder of the experiment. Leaf stomatal conductance (Cs) of transplanted trees 1 week after root severance was lower than that of control trees, but leaf water potentials (ψ) were similar. In the second experiment, sap flow was reduced relative to control trees within 2 h after root severance. Although Cs was reduced 4 hours after root severance, ψ was not. Embolism increased within 24 hours of root severance. These results indicate that root severance quickly induces increased levels of embolism, which is associated with reduced sap flow.
Bareroot Corylus colurna were grown in 7.5-liter containers from 11 Apr. until 27 June 1994. The growing medium was fritted clay. Fertility levels included no fertilization, 100 ppm N, or 200 ppm N. Plants were root pruned to remove none or one-quarter to one-half of the primary roots. Root pruning at any level resulted in decreased height, shoot, and root dry weights and number and length of new shoots. One-quarter primary root removal resulted in lower root: shoot ratios compared to plants that were unpruned. One-half primary root removal further reduced root: shoot ratios. One-half primary root removal also reduced total leaf area compared to unpruned controls. Fertilization at 200 ppm N increased leaf numbers and total leaf areas compared to plants receiving no fertilization.