Search Results
You are looking at 1 - 10 of 58 items for
- Author or Editor: Jiwan P. Palta x
In recent years evidence has been presented that implicates the role of free (cytosolic) Ca2+ as a major metabolic and developmental controller in plants. Calcium concentrations in the cytoplasm are kept very low under normal conditions (10-6 to 10-8 M). Small changes in the absolute amount of calcium can create a 10- to 100-fold change in the Ca2+ concentration without upsetting the ionic balance of the ceil. This feature makes Ca2+ an excellent candidate as a second messenger. Thus, a stress induced change in the cytosolic Ca2+ could bring a cellular/plant response to stress. This response is thought to be mediated through activation of Ca2+ and/or Ca2+-calmodulin-dependent protein kinases which in turn mediate the activity of various enzymes via phosphorylation. Recent evidences from the impact of salinity, low temperature, high temperature, and biotic stresses support such a role of calcium. Data on the association between stress-induced injury and perturbation of membrane/cytosolic calcium are available. In addition, evidences for the role of calcium in acclimation to stress have been reported. These studies suggest that manipulation of cellular Ca2+ may be one of the approaches we have on hand to bridge the gap between science and technology.
Previous studies in our laboratory both in pine needles and potato leaves have shown evidence of an increase in 18: 2 (linoleate) in the purified plasma membrane fraction during cold acclimation. This increase was reversible on deacclimation, thereby suggesting a link between the accumulation of 18: 2 and acquisition of freezing tolerance. These studies suggest that the activity of specific desaturases may be modulated during cold acclimation. This study was aimed at studying the possible involvement of stearoyl-ACP desaturase (delta9) in potato cold acclimation response. Our approach was to study the induction of delta9 desaturase at the transcript level by using potato delta9 desaturase gene specific primers and reverse transcriptase. For this purpose, mRNA from S. tuberosum (cold sensitive, unable to acclimate) and S. commersonii (cold tolerant, able to cold acclimate) was extracted before and after acclimation. Sequence analysis confirmed that the amplified band was delta9 desaturase. Our results show that there is an increase in delta9 desaturase gene transcripts during cold acclimation and that this increase is associated with the cold acclimation response in potato. These results together with previous reports on the increase in 18: 2 in the plasma membrane during cold acclimation give more evidence toward the involvement of stearoyl-ACP desaturase (delta9) in the potato cold response.
Lipids have been thought to be important largely in membrane structure and energy reserve. It is now evident that lipids and lipid-derived metabolites play a role in many critical cellular processes. Recent studies have shown that membrane lipid-based signaling mediated by phospholipases such as phospholipase A2 (PLA2), phospholipase C (PLC), and phospholipase D (PLD) constitutes a crucial step in plant responses to abiotic and biotic stresses. Phospholipases and their products also play a role during plant growth and development. For example, PLA2-derived lysophospholipids acted as growth regulators that retard senescence of plant tissues. Interestingly, the PLA2 products inhibited the activity of PLD, which has been suggested to be a key enzyme responsible for membrane lipid breakdown leading to plant senescence. Endogenous levels of lysophospholipids, such as lysophosphatidylethanolamine (LPE), could be increased in castor bean leaf discs by the treatment of auxin (50 μM), which is known to be a activator of PLA2. Pretreatment of leaf discs with a PLA2 inhibitor before auxin treatment nullified the auxin effect and rather resulted in accelerated senescence even compared to the nontreated control. Our recent results suggest a potential role of PLA2 products as biologically active molecules mediating hormonal regulation of growth and senescence. One such product LPE is being commercially exploited for retarding senescence and improving shelf life of fruits, vegetables, and cut flowers.
Ethephon [2-(chloroethyl) phoshonic acid] is used widely to maximize the yield of ripe tomato fruit. However, ethephon causes rapid and extensive defoliation, overripening, and promotes sunscald damage to the fruit. Recent studies from our laboratory have provided evidence that lysophoshatidylethanolamine (LPE) can reduce leaf senescence. We investigated the potential use of LPE to reduce damaging effect of ethephon on tomato foliage. Three-month-old tomato plants (variety Mountain Spring) grown in greenhouse conditions were sprayed with 200 ppm LPE (with 3% ethanol) at 6 and 24 h before ethephon treatment. After 8 days, plants treated with ethephon alone showed about 80% foliar damage while plant treated with LPE before ethephon treatment showed about 25% foliar damage. In a parallel study, LPE together with ethephon was found to maintain three to four times greater chlorophyll content in the leaves compared to ethephon alone. Treatments of LPE did not reduce the fruit ripening response by ethephon. Both sources of LPE were effective in preventing damaging effects of ethephon on the foliage. These results suggest that LPE treatments 6 and 24 h before ethephon application can prevent damaging effects of ethephon on foliage while allowing the acceleration of fruit ripening.
Tuber tissue calcium has been linked to several potato quality characteristics, including internal defects and the susceptibility of tubers to decay by soft rotting Erwinia species. We were particularly interested in studying the relationship between supplemental calcium fertilization during the seed tuber production cycle to raise the seed piece calcium concentration and the impact on crop performance the following season. The role of seed tuber tissue calcium level on seed piece decay, growth, development, and performance of the plant was evaluated for cultivars Russet Burbank, Dark Red Norland, Atlantic, Superior, and Snowden. This study was performed over four growing seasons. Seed tubers were raised with varying calcium and the following season, individual tubers (over 3,000 total for 4 years of study) were sampled for calcium and hand planted in the field. They were evaluated for seed piece decay and total tuber yield during the growing season. Seed tubers raised with supplemental calcium resulted in significantly higher mean calcium content than the control tubers. In general, calcium-raised seed tubers tended to produce a more vigorous main sprout and higher tuber yield. We also found that there are significant differences among these cultivars for the characteristics measured. Consistently, in all three years, `Atlantic' responded to test conditions with the lowest decay values, and `Dark Red Norland' consistently showed the highest decay values. This suggests that there may be a genetic component involved in these two responses and these genotypic differences could be exploited to improve cultivated potatoes.
Supplemental calcium application has been shown in our previous work to improve tuber quality and reduce internal defects. We evaluated the response under field conditions of five commerically significant cultivars to a combination of calcium nitrate, calcium chloride and urea (168 kg·ha-1 per season) over three seasons. We were able to determine that the cultivar with the greatest response to supplemental calcium for reduced bruising, `Atlantic' had the lowest levels of tuber tissue calcium. Conversely, cultivars with least response to supplemental calcium, `Dark Red Norland' and `Superior', had the highest levels of tuber tissue calcium. `Snowden' was both intermediate in response to calcium and tuber tissue concentration. Based on data for 3 years, we determined that across cultivars the calcium concentration at which tubers no longer respond is ≈250 ppm and ranges for individual years from 195 to 242 ppm. These results suggest that seasonal variation for individual cultivars may affect the tuber need for calcium for reduced bruising. Although the exact mechanism is not known, we believe that calcium supplemented to bulking tubers may lead to improved cell membrane stability, increased wall structure or enhanced ability of tubers to repair following injury. The results of our study show that supplemental calcium fertilization has the ability to significantly reduce the incidence of tuber bruising for several cultivars.
Freezing stress resistance is composed of several components namely tolerance, avoidance and acclimation ability. These three components of freezing stress are heritable traits. We have demonstrated that progress in the improvement of freezing stress resistance can be made by individually selecting for various components of this resistance and then recombining them to get the desired plan. Freeze-thaw injury in carrots is manifested as damage to the foliage, cracks on the roots (especially on the crown), and crown root rot. We found that foliage damage following freeze-thaw stress was related to the tolerance of the foliage to ice formation. The formation of cracks in the crown and root tissue was related to formation of ice itself. The carrot breeding lines we tested varied considerably for the crown position in relation to soil surface. The carrot crowns and roots below the soil surface will be better in avoiding ice in the tissue, thus avoiding cracks. The freeze-thaw injury observed on the foliage in the field was highly correlated to the freeze-thaw tolerance of leaf tissue (measured as ion leakage from the leaf tissue) determined by controlled freeze-thaw test in the laboratory. Based on this work we developed a breeding strategy to improve frost hardiness in carrots by combining the characteristics that avoid ice in the crown and root tissues (e.g., crown position underground) with the characteristics that reduce foliage and root injury by ice (freezing tolerance of foliage). By using this strategy we were able to successfully obtain the desired plant. Two hardy carrot hybrids (Eskimo, Artico) were released by Vilmorin and their hardy characteristics have been confirmed under field conditions.
Micropropagated `Red Norland' plants were transferred to an inert mixture of 1 perlite: 1 medium-grain quartzite (v/v) and grown 21 days at 20°C day/15°C night on a 25% Hoagland solution without Ca(NO3)2 (Ca at 10 mg·L–1 from CaCl2, N at 35 mg·L–1 from KNO3). Thereafter, Ca treatments (Ca at 0.2, 1, 5, 25, 125 mg·L–1) were imposed for 21 days with other nutrients unchanged. Day/night temperatures were 20/15°C and 35/20°C for control and stress plants, respectively. Continuous drip supply of nutrient solution in excess of demand maintained target rhizospheric Ca levels. All experiments were conducted in controlled-environment chambers with 400-μmol·m–2·s–1 light level. The following results were obtained. 1) Stress, but not control, plants grown with Ca at 0.2 and 1.0 mg·L–1 displayed reduced leaf expansion, extreme senescence, and death of the primary shoot meristem. 2) Plants grown with Ca at 5, 25 and 125 mg·L–1 grew normally under both temperature regimens, although plants responded to temperature with different biomass partitioning. (3) Total root mass at harvest was similar under all Ca–temperature combinations but low-Ca-treated plants had comparatively darker roots with fewer branches. (4) Light microscopic evaluation revealed normal staining patterns of lignified elements in leaves and stems of all plants. These data suggest that constant rhizospheric Ca levels >1 mg·L–1 are required for continued plant growth during exposure to heat stress.