Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Jingyi Wei x
Clear All Modify Search

Potassium deficiency is a major problem limiting tobacco (Nicotiana tabacum) growth, and grafting has the potential to alleviate it. To compare the photosynthetic performance of grafted tobacco under different potassium levels, tobacco Yunyan 87 (main cultivar) and Wufeng No. 2 (potassium high-efficiency cultivar) were selected to conduct mutual grafting trials in the form of hydroculture with two potassium supply levels (5 mmol·L−1 K and 0.5 mmol·L−1 K). The plant growth, gas exchange parameters, chlorophyll a fluorescence, and the initial ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) activity were measured. The results showed that potassium deficiency could significantly decrease the net photosynthetic rate, stomatal conductance (g S), and transpiration rate in the tobacco leaves, resulting in nonstomatal restriction. Grafting could effectively alleviate this problem. The actual quantum yield of photosystem II (PSII) photochemicals in ‘Yunyan 87’ increased 29.4% and 20.3% by grafting, respectively, under normal and low potassium levels. Compared with nongrafted ‘Yunyan 87’, grafting also effectively improved the electron transfer efficiency of PSII in the tobacco leaves under low potassium stress by reducing nonradiation energy dissipation and enhancing the initial activity of RuBisCO. From this study, it can be known that grafted tobacco plants can improve their photosynthesis by alleviating the nonstomata restriction of leaves under potassium stress and improving the electron transfer efficiency of PSII.

Open Access