Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Jing Yang x
Clear All Modify Search

The art of pressed flowers is a method of artistic expression involving the pressing of flowers, leaves, and other plant organs for artistic creative purposes. However, the pressing process often results in color variation of the plant material, which significantly diminishes the quality of artistic works and must be solved using appropriate techniques. During this research, phenylalanine (10 mmol⋅L−1) was used to treat the petals of postharvest Petunia flowers to investigate the impact of phenylalanine on mitigating color variation, and the effect of phenylalanine on inhibiting the color variation of Petunia petals during the pressing process was evaluated by color measurement, physicochemical indices, and gene expression level analyses. Using the CIEL*a*b* color measurements, the samples from the test group had significantly higher brightness (L*) and red coloration (a*) at the final stage (S4) than the control group. In addition, phenylalanine had a significant inhibitory effect on malondialdehyde and superoxide anion accumulations in Petunia petals during pressing and reduced the enzymatic activities of superoxide dismutase, polyphenol oxidase, and catalase. The quantitative reverse-transcription polymerase chain reaction analysis showed that the transcript levels of CHS, DFR, F3′5′H, and UFGT genes in the petals of the treatment group continued to increase during the pressing process, and the transcript levels of key genes in the anthocyanin metabolic pathway of the treated samples were higher than those of the control group at the final stage (S4). These results indicated that phenylalanine can effectively diminish the color variation of Petunia petals in the pressing process, which could serve as a theoretical basis for the development of a comprehensive technology system aimed at preserving the color of pressed horticultural plants.

Open Access

Rhododendron delavayi Franch. is an important ornamental plant and often plays a role in natural hybridization with other sympatric species in Rhododendron subgenus Hymenanthes. Fifteen microsatellite loci were developed and characterized in this species. The average allele number of these microsatellites was four per locus, ranging from three to six. The ranges of expected (HE ) and observed (HO ) heterozygosities were 0.0365 to 0.7091 and 0.0263 to 0.9512, respectively. Cross-species amplification in R. agastum and R. decorum showed that a subset of these markers holds promise for congeneric species study. These sets of markers are potentially useful to investigate the genetic structure and gene flow of R. delavayi and other congeneric species.

Free access

White rust (causative pathogen Puccinia horiana) is a destructive disease of commercial chrysanthemum crops. A panel of 19 accessions of commercial chrysanthemum near-relatives (four Ajania species, 11 Chrysanthemum species including five accessions of Chrysanthemum indicum) were screened for their reaction to white rust infection in separate greenhouse trials carried out at two independent sites in eastern China, one in 2010 and the other in 2012. The reaction of the accessions to artificial inoculation ranged from immune to highly susceptible. Accessions of Chrysanthemum indicum, C. yoshinaganthum, C. makinoi var. wakasaense, C. nankingense, C. vestitum, C. lavandulifolium, C. crassum, and Ajania tripinnatisecta were immune, and strong resistance was present in C. japonense, C. × shimotomaii, and A. przewalskii. Most of the accessions behaved similarly in the two trials, but two of the C. indicum accessions produced inconsistent results, each being highly resistant in one trial but susceptible in the other. Because wide crosses are relatively easy to achieve in the chrysanthemum complex, these immune and highly resistant accessions represent promising germplasm for white rust resistance breeding.

Free access

It has been proved that irrigation with high saline water and leaching fraction (LF) affect crop yield, but the effects of irrigation water salinity (ECiw) and LF on fruit quality remain largely elusive. We therefore investigated the effects of ECiw and LF on the yield, fruit quality, and ion content of hot peppers. An experiment using irrigation water with five levels of salinity (ECiw of 0.9, 1.6, 2.7, 4.7, and 7.0 dS·m−1) and two LFs (0.17 and 0.29) was conducted in a rain shelter. The experiment took the form of a completely randomized block design, and each treatment was replicated four times. We increased the salinity of the irrigation water by adding 1:1 milliequivalent concentrations of NaCl and CaCl2 to a half-strength Hoagland solution. The plants were irrigated for 120% and 140% evapotranspiration, corresponding to an LF of 0.17 and 0.29. Results showed that the total fruit yield decreased significantly with an increase in the ECiw as a result of reduction both in the fresh weight of fruit and the number of fruit per plant. An increase in the ECiw also led to a decrease in the total dry biomass of fruit and plant, as well as decreasing water use efficiency (WUEF). Salinity reduced the appearance of the fruit by both decreasing the length (FL) and maximum width (FMW) of the fruit. However, increased ECiw also improved the taste of the hot peppers by increasing the total soluble solid (TSS) content, as well as adding to their nutritional quality with a higher content of Vitamin C (VC). Their storage quality was also improved because of an improvement in the firmness of the fruit (Fn) as well as a reduction in the fruit water content (FWC). An increase in the LF led to an increase in the total fruit yield, total dry biomass of fruit and plant, and WUEF; it also increased the FWC and VC content, and decreased the FMW and fruit shape index (FSI). The threshold-slope linear response and sigmoidal-sharp models were both a good fit for the measured total fruit yield, and the LF had no significant effect on the model parameters. The relative TSS and Fn increased linearly as the electrical conductivity (EC) of soil-saturated paste extract (ECe) increased, whereas they decreased linearly as the relative seasonal evapotranspiration (ETr) increased regardless of the LFs. The relative FW, FL, and FMW decreased linearly with the increased ECe, and increased linearly with the increased ETr regardless of the LFs. The relative fruit Na+ concentration increased linearly as the ECe increased. The regression correlations between the total fruit yield, fruit quality parameters, ion contents, and ECe or ETr could provide important information for salinity and irrigation water management with a compromise between the hot pepper yield and fruit quality.

Free access

By using a modified biotin-streptavidin capturing method, a total of 20 polymorphic microsatellite markers were developed from Moringa oleifera Lam. (Moringaceae), a useful multipurpose tree. Twenty-four domesticated individuals, with germplasms of India and Myanmar, were used to screen polymorphism of these 20 microsatellite markers. The number of alleles per locus ranged from two to six. The expected and observed heterozygosity varied from 0.3608 to 0.7606 and from 0.0000 to 0.8750, respectively. Seven loci were significantly deviated from Hardy-Weinberg equilibrium. The availability of these microsatellite primers would provide a powerful tool for aspects of detailed population genetic studies of M. oleifera.

Free access

Heat tolerance is considered to be an essential feature for cucumber (Cucumis sativus) production, and it has been suggested that higher antioxidant ability could prevent the oxidative damage in plants caused by high-temperature stress. We aimed to investigate whether the application of exogenous spermidine (Spd) increases antioxidant activities and, therefore, elevates the heat tolerance of cucumber. Cucumber seedlings (cv. Jinchun No. 4) showing moderate heat tolerance were grown in climate chambers to investigate the effects of exogenous Spd (1 mm) foliar spray treatment on the activities and isozyme levels of antioxidative enzymes under both high-temperature stress 42/32 °C (day/night) and normal temperature 28/18 °C (day/night). On high-temperature stress, the activities of superoxide dismutase and ascorbate peroxidase were significantly reduced; the catalase activity was initially lower and then increased, whereas the peroxidase activity was initially higher and then decreased. The levels of these isozymes also changed differently. On treatment with exogenous Spd, the activities of these antioxidant enzymes were noticeably enhanced, and the isozyme zymogram expression had some changes. It was concluded that foliar spray with Spd effectively improved the total antioxidant ability of cucumber seedlings and, therefore, enhanced the tolerance of the plants to high-temperature stress.

Free access

In this experiment, the responses of plant growth, gas exchange parameters, and ion concentration to different levels of irrigation water salinity (ECiw of 0.9, 1.6, 2.7, 4.7 and 7.0 dS·m−1) and leaching fractions (LFs of 0.17, 0.29) were investigated in hot pepper plants. The pot experiment was conducted using a completely randomized block design with four replications in a rain shelter. Results showed that the height of the hot pepper plants decreased as the ECiw was increased from 25 d after transplanting (DAT) and increased when the LF was increased from 55 DAT. Neither the ECiw nor the LF influenced the root length. An increase in the ECiw caused the suppression of the stem diameter (SD); leaf length; leaf area; leaf chlorophyll content (CCI); dry biomass of roots, stems, and leaves; net photosynthesis (P n); stomatal conductance (g S); transpiration rate (T r); and intercellular CO2 concentration (C i). An increase in the LF caused the SD, leaf length, leaf area, and dry biomass of stems and leaves to increase. However, the dry biomass of roots and the P n, g S, T r, and C i were not significantly affected by the LF, except for the C i measured on 23 DAT and the T r on 76 DAT. The Na+ concentrations in the roots and stems increased, whereas the K+/Na+ ratios decreased as the ECiw increased. An increase in the LF led to a decrease in the Na+ concentration of the roots and stems, whereas there was an increase in the K+ concentration in the stems and the K+/Na+ ratios in the roots and stems. Collectively, an increase in the ECiw had an adverse effect on plant growth and gas exchange and led to the accumulation of the Na+ concentration in the roots and stems, whereas an increase in the LF enhanced plant growth, leaf transpiration, and K+ concentration and reduced the accumulation of the Na+ concentration in the roots and stems. We suggest that higher quantity of water should be applied in higher saline irrigation for satisfactory performance for hot pepper growth.

Free access

Wintersweet is a woody ornamental plant and has a long history of human cultivation. Few molecular markers have been characterized and remain scant in wintersweet. This study aimed to mine simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) from the transcriptomic database of wintersweet. A total of 3972 SSRs and 97,060 putative SNPs/indels (92,307 SNPs and 4753 indels) were identified in this data set. This study marks the highest number of SSR and SNP markers discovered to date from wintersweet by using transcriptome sequencing data. These identified markers will provide a useful source for molecular genetic studies such as genetic diversity and characterization, association mapping, and map-based gene cloning in wintersweet.

Free access