Search Results
Verticillium wilt (caused by Verticillium dahliae), a soilborne disease, often causes significant reductions of yield in eggplant (Solanum melongena L.) production where crop rotation is limited. Rootstock replacement through grafting is considered an effective method to control this disease. This 2-year study investigated the eggplant yield, resistance to verticillium wilt, and allelochemicals in root exudates of eggplant grafted onto a tomato rootstock. Both disease incidence and disease severity on grafted eggplant were markedly lower than those of nongrafted eggplants. Fifteen days after V. dahliae inoculation, grafted eggplants did not exhibit any infection, whereas the disease incidence and disease severity index of the nongrafted eggplants were 68.3% and 37.8% in 2006 and 66.7% and 36.3% in 2007, respectively. Twenty-five days after inoculation, disease incidences on grafted eggplants were only 8.1% and 9.5% in 2006 and 2007, respectively, but those of the nongrafted eggplants increased to 100%. As a result, early yield, total yield, and average fruit weight were significantly increased by grafting when inoculated with V. dahliae in 2006 and 2007. Mycelium growth of V. dahliae was inhibited by the root exudates of grafted eggplants. In contrast, the root exudates of nongrafted eggplants enhanced the mycelium growth. The gas chromatography–mass spectrometry analysis revealed that the composition in the root exudates released by grafted eggplants differed not only from the nongrafted eggplants, but also from the tomato rootstock plants. Ten chemical classes were isolated and identified in root exudates of grafted eggplants. Carbazoles, amines, azulene, and fluorene were only detected in the grafted eggplants. The relative contents of ester compounds were the highest in the root exudates from the grafted eggplant followed by derivatives of benzene, whereas the relative contents of benzene derivatives were much higher than that of the ester compounds in the root exudates from the nongrafted eggplant and tomato rootstock.
Dwarfing rootstocks can improve the plant architecture of apple trees and increase production. Gibberellins (GAs) are crucial for plant growth and dwarfing traits. The receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1), plays an important role in the regulation pathway. However, the growth regulatory mechanism of GID1 in dwarf apple rootstock seedlings is not clear. In this study, we selected dwarf apple rootstock ‘SH6’ and its cross parents as materials to clone the GA receptor gene GID1c. There were two different sites in the alpha/beta hydrolase domain. The expression of GID1c in ‘SH6’ was lower than that in Malus domestica cv. Ralls Janet, with the decrease of GA content. We further conducted GA3 treatment and overexpression of GID1c in tissue culture seedlings of ‘SH6’, and the results showed that the expression of GID1c and biosynthesis genes increased and promoted the accumulation of hormone contents, which ultimately regulates the growth of ‘SH6’ dwarf apple rootstock seedlings. Our results suggest that GID1c may affect the plant architecture and dwarf traits of dwarfing rootstock and accelerate its application in orchards.