Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: JinFeng Chen x
Clear All Modify Search

Gummy stem blight (GSB) caused by the ascomycete fungus Didymella bryoniae (Auersw.) Rehm is an important disease of melon. Molecular markers linked to resistance would be useful for melon breeding programs. The amplified fragment length polymorphism (AFLP) technique and bulk segregant analysis were used to identify molecular markers linked to the resistance of melon to Didymella bryoniae. Segregation analysis of F2 progeny from a cross of PI 420145, a resistant line, and PI 136170, a susceptible line, showed that resistance to GSB was controlled by a dominant gene. One AFLP marker, E-TG/M-CTC200, was identified that is tightly linked to GSB resistance gene at a distance of 2.0 cM. To our best knowledge, this is the first report of AFLP markers linked to GSB resistance in melon. The identification of AFLP markers provides a step toward the use of marker-assisted selection and the characterization of the gene encoding resistance to GSB in melon.

Free access

The current Cucumis taxonomic classification places C. hystrix Chakr. in subgen. Cucumis based on its morphological similarities to cucumber (C. sativus L., 2n = 14). However, the chromosome number of C. hystrix was identified as 2n = 24, the same number as in subgen. Melo. Cucumis hystrix is therefore considered the first wild Cucumis species of Asiatic origin possessing 12 basic chromosomes. Thus, any research regarding its biosystematics would challenge the basic chromosome number and geographic location theories that govern the current taxonomic system. The production of the amphidiploid species (Cucumis ×hytivus Chen and Kirkbride, 2n = 38) obtained from the cross between C. hystrix and C. sativus and subsequent chromosome doubling would provide an effective means of investigating the relationship between Cucumis species with two different basic chromosome numbers. Thus, RAPD markers were used to study the taxonomic placement of C. hystrix and its interspecific hybrid with cucumber. Of the 220 arbitrary primers screened, 31 were used for analysis where 402 (96.3%) fragments were polymorphic among the germplasm examined. A UPGMA-based cluster analysis partitioned 31 accessions into two main groups [C. sativus (CS) and C. melo (CM)]. Under the similarity coefficient threshold of 0.23, these two groups can be further divided into five clusters with C. hystrix, C. ×hytivus, and C. sativus as separate clusters in the CS group. A modified taxonomic system is proposed based on these results and findings of a previous chloroplast DNA analysis with the genus Cucumis containing subgen. Cucumis with three species and subgen. Melo with six series.

Free access

High temperature (HT) is a major environmental stress limiting oversummer production of nonheading Chinese cabbage (NHCC, Brassica campestris ssp. chinensis Makino). In the present study, the effects of HT on photosynthetic capacity, including light reaction and carbon assimilation, were completely investigated in two NHCC, ‘xd’ (heat-tolerant), and ‘sym’ (heat-susceptible). The two genotypes showed significant differences in plant morphology, photosynthetic capacity, and photosynthate metabolism (carboassimilation). HT caused a decrease in photosynthesis, chlorophyll contents, and photochemical activity in NHCC. However, these main photosynthetic-related parameters, including net photosynthetic rate (P N ), maximal photochemical efficiency of PSII (Fv/Fm), and total chlorophyll content in ‘xd’, were significantly higher than those of ‘sym’ plants. The antioxidant contents and antioxidative enzyme activities of ascorbic acid-reduced glutathione cycle in the chloroplast of ‘xd’ were significantly higher than those of ‘sym’. Microscopic analyses revealed that HT affected the structure of photosynthetic apparatus and membrane integrity to a different extent, whereas ‘xd’ could maintain a better integrated chloroplast shape and thylakoid. Inhibited light reaction also hampered carbon assimilation, resulting in a decline of carboxylation efficiency and imbalance of carbohydrate metabolism. However, larger declined extents in these data were presented in ‘sym’ (heat-susceptible) than ‘xd’ (heat-tolerant). The heat-tolerant genotype ‘xd’ had a better capacity for self-protection by improved light reaction and carbon assimilation responding to HT stress.

Free access

Gummy stem blight incited by the fungus Didymella bryoniae is a major disease of melons worldwide. The objectives of the present study were to critically evaluate melon (Cucumis melo L.) germplasm for resistance to D. bryoniae and to characterize the genetics of resistance in the resistant accessions. Two hundred sources of germplasm (plant introduction accessions, cultivars, breeding lines, landraces, and wild relatives) were screened against a single highly virulent isolate (IS25) of D. bryoniae in a plastic tunnel. The genetics of resistance to D. bryoniae was studied in three crosses between plant introductions 157076, 420145, and 323498, resistant parents that were fairly adapted (flowering, fruiting, powdery mildew tolerance) to Nanjing conditions, and plant introductions 268227, 136170, and NSL 30032 susceptible parents, respectively. Six populations of each cross (susceptible parent, resistant parent, F1, F2, the two reciprocal backcrosses) were analyzed for their responses to D. bryoniae. Seedlings in both studies were inoculated with a spore suspension (5 × 105 spores/mL−1) of D. bryoniae at the four to six true-leaf stages and assessed for leaf and stem damage at 7, 14, and 21 d postinoculation. Results of germplasm screening indicated most germplasms reported as resistant elsewhere were confirmed resistant under our conditions. However, some plant introductions identified as highly resistant elsewhere were susceptible under our conditions, the most interesting being plant introduction 482399. This plant introduction that was considered resistant was highly susceptible in our study. We also identified other sources of resistance not reported previously, for example, JF1; a wild Cucumis from the highlands of Kenya was rated highly resistant. Analysis of segregation of F1, F2, and backcross generations of the three crosses indicated that each of the three plant introductions carry a single dominant gene for resistance to the D. bryoniae.

Free access

Cucumber (Cucumis sativus) seed oil has the potential for use as an edible oil and as a pharmaceutical, cosmetic, insecticidal, and industrial product. In this study, we investigated, for the first time, the effect of cultivar and season on seed number, oil content, and fatty acid profiles as well as their proportions in different cucumber cultivars. We examined the effects of spring and autumn seasons on seed oil content and fatty acid composition in 46 cucumber cultivars and one wild species of cucumber (C. anguria) grown in greenhouse experiments in 2013 and 2014. Seed oil was determined using the Soxhlet method and fatty acids using the gas chromatography-mass spectrometry method. Seed oil content in the cucumber seeds ranged from 41.07% in ‘Hazerd’ to 29.24% in ‘Lubao’ while C. anguria had 23.3%. Fatty acids detected were linoleic (C18:2), palmitic (C16:0), oleic (C18:1), stearic (C18:0), linolenic (C18:3), behenic (C22:0), arachidic C20:0), lignoceric (C24:0), eicosenoic (C20:1), palmitoleic (C16:1), and myristic (C14:0), among other unidentified fatty acids. The results showed significant effects of cultivar genotype, growing season, and interactions on the variables examined. The content of seed oil and fatty acids differed significantly among the cultivar genotypes. Spring-grown cucumbers had higher quantities of oil than the autumn-grown cucumbers. The content of fatty acids (mainly palmitic, palmitoleic, stearic, oleic, eicosenoic, and lignoceric) also was higher in spring. In autumn there were more seeds, and higher linoleic, linolenic, and other unspecified fatty acids. The higher the oleic acid content the lower was the linoleic acid indicating a strong negative relationship in these two fatty acids. The higher the seed oil content the higher was linoleic and oleic indicating a positive relationship between the seed oil and the two fatty acids. Results of this study provide important information applicable in improving management and production of cucumber seed oil especially considering its versatility in uses. Furthermore, the wide range of fatty acids found in the studied cucumber cultivars could be used in the production of novel industrial oils through genetic engineering.

Free access