Search Results
The genetic base of commercial cucumber (Cucumis sativus L.) is extremely narrow (about 3%–8% polymorphism). Wide-based crosses within C. sativus [i.e., C. sativus var. sativus × C. sativus var. hardwickii (R.) Alef.] and interspecific hybridization attempts before 1995 have not substantially increased genetic diversity for plant improvement. However, in 1995, an amphidiploid (Cucumis hytivus Chen and Kirkbride) was derived from a C. sativus × Cucumis hystrix Chakr. mating. A derivative of this amphidiploid was used herein to broaden the genetic base of cucumber through backcross introgression [(C. sativus × C. hytivus) × C. sativus]. Initially, the combining ability of eight genetically diverse lines was investigated for days to anthesis (DA), sex expression (SEX), lateral branch number (LBN), fruit per plant (FP), fruit length:diameter ratio (L:D), and salt-processing ability [i.e., processed fruit color (exterior and interior), shape, and seed cavity characteristics]. Based on the combining ability, inbred backcross lines [IBL (BC2S3)] were developed from an original gynoecious determinate line WI 7023A [C. sativus (recurrent parent)] × monoecious indeterminate line WI 7012A (C. sativus × C. hytivus derived) mating, where 30 of 392 (8%) BC1 progeny were selected based on their diversity at 16 mapped marker loci. These progeny were used to develop BC2 progeny, which were then self-pollinated without further selection to produce 94 IBL. These IBL were genotyped and evaluated in the open field in two plantings in 2008 for DA, SEX, LBN, leaf size, FP, and L:D. The genetic distance (GD) between parental lines was 0.85, and the GD among IBL ranged between 0.16 and 0.75. Multivariate analyses indicated that IBL differed from parental lines and possessed considerable morphological and genotypic diversity that could be used to broaden the genetic base of commercial U.S. processing cucumber.
The current Cucumis taxonomic classification places C. hystrix Chakr. in subgen. Cucumis based on its morphological similarities to cucumber (C. sativus L., 2n = 14). However, the chromosome number of C. hystrix was identified as 2n = 24, the same number as in subgen. Melo. Cucumis hystrix is therefore considered the first wild Cucumis species of Asiatic origin possessing 12 basic chromosomes. Thus, any research regarding its biosystematics would challenge the basic chromosome number and geographic location theories that govern the current taxonomic system. The production of the amphidiploid species (Cucumis ×hytivus Chen and Kirkbride, 2n = 38) obtained from the cross between C. hystrix and C. sativus and subsequent chromosome doubling would provide an effective means of investigating the relationship between Cucumis species with two different basic chromosome numbers. Thus, RAPD markers were used to study the taxonomic placement of C. hystrix and its interspecific hybrid with cucumber. Of the 220 arbitrary primers screened, 31 were used for analysis where 402 (96.3%) fragments were polymorphic among the germplasm examined. A UPGMA-based cluster analysis partitioned 31 accessions into two main groups [C. sativus (CS) and C. melo (CM)]. Under the similarity coefficient threshold of 0.23, these two groups can be further divided into five clusters with C. hystrix, C. ×hytivus, and C. sativus as separate clusters in the CS group. A modified taxonomic system is proposed based on these results and findings of a previous chloroplast DNA analysis with the genus Cucumis containing subgen. Cucumis with three species and subgen. Melo with six series.
Gummy stem blight incited by the fungus Didymella bryoniae is a major disease of melons worldwide. The objectives of the present study were to critically evaluate melon (Cucumis melo L.) germplasm for resistance to D. bryoniae and to characterize the genetics of resistance in the resistant accessions. Two hundred sources of germplasm (plant introduction accessions, cultivars, breeding lines, landraces, and wild relatives) were screened against a single highly virulent isolate (IS25) of D. bryoniae in a plastic tunnel. The genetics of resistance to D. bryoniae was studied in three crosses between plant introductions 157076, 420145, and 323498, resistant parents that were fairly adapted (flowering, fruiting, powdery mildew tolerance) to Nanjing conditions, and plant introductions 268227, 136170, and NSL 30032 susceptible parents, respectively. Six populations of each cross (susceptible parent, resistant parent, F1, F2, the two reciprocal backcrosses) were analyzed for their responses to D. bryoniae. Seedlings in both studies were inoculated with a spore suspension (5 × 105 spores/mL−1) of D. bryoniae at the four to six true-leaf stages and assessed for leaf and stem damage at 7, 14, and 21 d postinoculation. Results of germplasm screening indicated most germplasms reported as resistant elsewhere were confirmed resistant under our conditions. However, some plant introductions identified as highly resistant elsewhere were susceptible under our conditions, the most interesting being plant introduction 482399. This plant introduction that was considered resistant was highly susceptible in our study. We also identified other sources of resistance not reported previously, for example, JF1; a wild Cucumis from the highlands of Kenya was rated highly resistant. Analysis of segregation of F1, F2, and backcross generations of the three crosses indicated that each of the three plant introductions carry a single dominant gene for resistance to the D. bryoniae.
To select resistant germplasm resources and understand the growth and physiological responses of kiwifruit (Actinidia sp.) to drought stress, five species, Actinidia macrosperma (Acma), Actinidia longicarpa (Aclo), Actinidia deliciosa (Acde), Actinidia hemsleyana (Ache), and Actinidia valvata (Acva), were assessed under tissue culture conditions. Rootless seedlings of five species were cultured in a medium containing polyethylene glycol [PEG (formula weight 8000)] to induce drought stress (0%, 5%, 10%, 15%, and 20%). After a 30-day culture, three growth indices [fresh weight (FW), plant height (PLH), and leaf number (LN)] and six physiological indices were determined, and the drought damage index (DDI) was determined. The DDIs of five species increased, and three growth indices decreased with increasing PEG concentrations. The following changes were observed under 20% PEG treatment conditions: superoxide dismutase (SOD) activities increased significantly in Acma, Aclo, and Ache specimens; peroxidase (POX) activities remained stable in Acde, Ache, and Acva specimens; and catalase (CAT) activities increased sharply in Acma and Acva. Furthermore, the results indicated that soluble sugar (SS) content increased slightly in Acma, Aclo, Acde, and Ache but it decreased in Acva specimens. Proline (PRO) content increased significantly in Acma and Acva, and malondialdehyde (MDA) contents tended to increase under drought stress in all five species. Principal component analysis (PCA) results indicated that the order of drought tolerance in the five genotypes examined in this study under tissue culture conditions was as follows: Acma > Acva > Acde > Aclo > Ache. Therefore, we concluded that Acma and Acva are more resilient germplasm resources that represent promising kiwifruit-breeding materials. Furthermore, tolerance to drought stress in these species should be further investigated under orchard conditions.
Fresh fruit of longan (Dimocarpus longan Lour.) are susceptible to pericarp browning and aril breakdown. Aril breakdown in longan fruit is regarded as one of the most important factors reducing quality and shortening storage life of the fruit. To better understand the molecular mechanism of aril breakdown, the expression patterns of three expansin (EXP) and three xyloglucan endotransglucosylase (XET) genes in relation to the aril breakdown of longan fruit stored at room temperature (25 °C) or low temperature (4 °C) were investigated. The results showed that aril breakdown index increased progressively during storage at 25 and at 4 °C. Northern blotting analysis revealed that the accumulations of three EXP and three XET genes exhibited differential characteristics with the occurrence of aril breakdown. During storage at 25 °C, the accumulations of Dl-XET3 increased after 1 day, suggesting that Dl-XET3 correlated well with the early aril breakdown, while Dl-EXP3 together with Dl-XET1 and Dl-XET2 was involved in later aril breakdown. However, expression of Dl-XET1 and Dl-XET2 could be mainly involved in aril breakdown of longan fruit stored at 4 °C. In addition, Dl-EXP2, whose accumulation increased sharply when longan fruit were transferred from low temperature to room temperature within 12 hours, was related to the aril breakdown in this storage period. These data indicated that Dl-EXPs and Dl-XETs were closely related to aril breakdown in longan fruit.