Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jin-Cheol Jeong x
Clear All Modify Search

Potato (Solanum tuberosum L. `Russet Burbank' and `Shepody') tubers were exposed to continuous 4 μL·L-1 (166 μmol·m-3) ethylene in air. Treatment started after 8 weeks in storage and continued up to 33 weeks of storage at 9 °C over one (`Russet Burbank') or two (`Shepody') storage seasons. Tubers were sampled at 3 week (`Shepody') or 5 week (`Russet Burbank') intervals for polyamine content [putrescine, (PUT); spermidine, (SPD); and spermine, (SPM)] and sprout number and fresh weight per tuber. During the storage period, `Shepody' had higher concentrations of all three polyamines and a higher PUT/(SPD + SPM) ratio, compared with `Russet Burbank'. All three polyamines in both cultivars increased during storage, and the increase was more rapid in `Shepody' than in `Russet Burbank'. Regardless of cultivar and year, exposure to ethylene induced higher spermidine (SPD) content and a lower PUT/(SPD + SPM) ratio, compared with the air treatment. Sprouts appeared later and were smaller on ethylene-treated tubers and were more numerous in `Russet Burbank'. These long-term ethylene effects may be due, in part, to enhanced transformation of PUT to SPD.

Free access

The contribution of aerial plant parts versus the root zone to the removal of volatile formaldehyde by potted Fatsia japonica Decne. & Planch. and Ficus benjamina L. plants was assessed during the day and night. The removal capacity of the entire plant, aerial plant parts, and root zone was determined by exposing the relevant parts to gaseous formaldehyde (2 μL·L−1) in airtight chambers (1.0 m3) constructed of inert materials. The rate of formaldehyde removal was initially rapid but decreased as the internal concentration diminished in the chamber. To compare the removal efficiency between species and plant parts, the time interval required to reach 50% of the initial concentration was determined (96 and 123 min for entire plants of F. japonica and F. benjamina, respectively). In both species, the aerial plant parts reduced the formaldehyde concentration during the day but removed little during the night. However, the root zone eliminated a substantial amount of formaldehyde during the day and night. The ratio of formaldehyde removal by aerial plant parts versus the root zone was similar for both species, at ≈1:1 during the day and 1:11 at night. The effectiveness of the root zone in formaldehyde removal was due primarily to microorganisms and roots (≈90%); only about 10% was due to adsorption by the growing medium. The results indicate that the root zone is a major contributor to the removal of formaldehyde. A better understanding of formaldehyde metabolism by root zone microflora should facilitate maximizing the phytoremediation efficiency of indoor plants.

Free access