Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jin Jiao x
  • All content x
Clear All Modify Search
Free access

Jin Jiao, Xing Liu, Juyou Wu, Guohua Xu, and Shaoling Zhang

Mitogen-activated protein kinase (MAPK) cascades are universal signal-transduction modules, but the available information is limited in pear (Pyrus). In this study, 87 MAPK genes were identified from five Rosaceae species: chinese white pear (Pyrus ×bretschneideri cv. Dangshansuli), peach (Prunus persica), apple (Malus domestica), strawberry (Fragaria vesca), and plum (Prunus mume), 23 of which came from chinese white pear, designated as PbrMAPK. Based on the phylogenetic analysis and the architectures of conserved protein motifs of these gene sequences, MAPK family genes of five Rosaceae species were classified into two primary types (I and II) or four groups (Classes A–D). We have indicated that both segment and tandem duplications significantly contributed to the expansion of the MAPK family in Rosaceae by analysis of genomic evolution. In chinese white pear pollen, the expression analysis revealed that all PbrMAPKs could respond to temperature stresses (high/low temperature) and phytohormones, except PbrMAPK8 and PbrMAPK19 that displayed lower expressions, which suggested that PbrMAPKs play pivotal roles in signal-transduction pathways. In addition, we determined that PbrMAPK13 is located in the nucleus and plasma membranes. The lengths of pollen tubes became shorter when PbrMAPK13 was silenced by antisense oligonucleotide transfection. Our results provided an evolutionary foundation and functional characterization for MAPK gene families in chinese white pear and other plant species so as to elucidate their biological roles.

Free access

Jiao Chen, De-bao Yuan, Chao-zheng Wang, Yi-xing Li, Fen-fang Li, Ke-qian Hong, and Wang-jin Lu

Many reports indicate that an abundance of really interesting new gene (RING) play key roles in regulating defense responses against abiotic and biotic stresses in plants. In this study, the cloning and functional characterization of a RING gene, MaRING2, in banana (Musa acuminata) fruit are reported. MaRING2 belongs to the NEP1-interacting protein (NIP) RING-H2 finger protein family. Gene expression profiles revealed that MaRING2 was cold responsive and induced by abscisic acid (ABA) treatment during cold storage. In this study, the MaRING2 under control of the Cauliflower mosaic virus 35S (CaMV 35S) promoter was transformed to tobacco (Nicotiana benthamiana) using agrobacterium (Agrobacterium tumefaciens)-mediated transformation. The resultant MaRING2-overexpressing transgenic plants (35S:MaRING2) exhibited significantly increased tolerance to low temperatures and were hypersensitive to exogenous ABA in terms of germination and early seedling growth. In addition, overexpression of MaRING2 enhanced the expression of stress-responsive genes under normal (before cold stress) or cold conditions. These results demonstrate the biological role of MaRING2 in conferring cold tolerance. Taken together, these results suggest that MaRING2, a C3H2C3-type RING protein, is a positive regulator of the ABA-dependent stress response.