Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Jill M. Dunlop x
  • HortScience x
Clear All Modify Search

Oleocellosis or oil spotting on the peel of citrus fruit is a common post-harvest injury caused by improper handling. Mechanical injury allows phytotoxic oil to leak out of oil glands and cause injury to surrounding flavedo cells, resulting in oleocellosis. Mechanical harvesting (MH) of ‘Valencia’ sweet orange is conducted in late spring, when the next season's fruitlets are in their early stages of development. There is a concern that mechanical injury from harvesting machines can cause oleocellosis and fruit drop of young, green ‘Valencia’ sweet orange fruitlets, especially late in the harvest season when fruitlets are relatively large. We evaluated the effects of winter drought stress and subsequent late-season MH with a canopy shaker on oleocellosis of ‘Valencia’ sweet orange fruitlets. In April, mature fruit size, juice content, total soluble solids, and acidity were unaffected by previous winter drought stress treatments. Mechanical harvesting removed ≈90% to 95% of mature fruit and 20% to 50% of fruitlets depending on previous drought stress treatments and harvesting date. Beginning 1 week after the late harvest (13 June), attached fruitlets were tagged and visually evaluated approximately every other month to determine oleocellosis injury until the late-season harvest 12 months later. Only 12% of the fruitlets had oleocellosis on more than 30% of their surface area. Up to 75% of the fruitlets from the previously drought-stressed trees had less than 10% of their surface area injured after MH and 11% of these fruitlets dropped before harvest. Nonetheless, there was no significant increase in fruit drop with increased surface area injured nor was juice quality affected at harvest. Overall, fruit surface oleocellosis decreased and healed as fruit expanded, but surface blemishes did not completely disappear. Thus, fruitlet oleocellosis in late-season mechanically harvested trees was cosmetic and did not increase fruit drop nor alter internal fruit quality.

Free access

We determined if winter drought stress could delay flowering and fruit development of immature ‘Valencia’ sweet oranges to avoid young fruit loss during late-season mechanical harvesting. Beginning in December over three consecutive seasons (2007–2009), Tyvek® water-resistive barrier material was used as a rain shield groundcover under 13- to 15-year-old trees. There were three treatments: 1) drought = no irrigation and covered soil; 2) rain only = no irrigation, no cover; and 3) normal irrigation with rain and no cover. Covers were removed in February or March and normal irrigation and fertilization were resumed. The drought stress did not affect fruit yield, size, percentage juice, or juice quality of the current crop harvested in May and June relative to continuously irrigated trees. Drought stress delayed flowering by 2 to 4 weeks so that the immature fruit for next season's crop were smaller than on continuously irrigated trees during June but fruit growth caught up by September. During mechanical harvesting, previously drought-stressed trees lost fewer young fruit than continuously irrigated trees. Thus, winter drought stress effectively delayed flowering and avoided young fruit loss during late-season mechanical harvesting without negative impacts on yield or fruit quality of ‘Valencia’ orange trees.

Free access