Search Results
Broccoli and cauliflower are among the most regeneratively intractable genotypes found in the brassicaceae. To develop a method for transfer of the gene encoding S-adenosylmethionine hydrolase (SAMase) into inbred broccoli and cauliflower germplasm, we investigated the morphogenic competence and Agrobacterium susceptibility of a wide range of tissues of varied source. Appropriately controlled expression of the SAMase gene should, theoretically, reduce the plant's capacity for ethylene biosynthesis and extend the post harvest shelf life of the flower head.
Through examination of the in vitro response of a wide range of tissues we identified procedures which support caulogenesis from 100% of explants, each producing more than 30 shoots which readily convert to plantlets. Studies with several wild type and disarmed Agrobacterium strains, and utilization of the binary vector system and appropriate marker and reporter genes, led to the identification of methods for high frequency T-DNA transfer to explant tissues and the flow frequency of transgenic plants containing SAMase gene.