Search Results

You are looking at 1 - 10 of 20 items for

  • Author or Editor: Jie Zhang x
Clear All Modify Search

Nutrient-depleted soil is a major constraint for crop production, particularly for fruits. Here, we investigated the different response of nitrogen (N), phosphorus (P), and potassium (K) deficiency on the growth and development of strawberry (Fragaria ×ananassa Duch.) in sand culture under greenhouse conditions. Compared with K, the lack of N or P is more unfavorable to strawberry growth and development. N deficiency affected shoot-root (S/R) ratio at different growth stages, and decreased the shoot biomass. P deficiency greatly increased the N content but decreased K content of the plants, which means P is of advantage to regulate the absorption and utilization of N and K nutrients in plants. Meanwhile, P has a profound influence on fruit quality, such as total soluble (TSS) sugar content. K deficiency is not conducive to fruit coloring and the formation of high-quality commercial fruits. The results contribute to a better understanding of the difference of N, P, or K deficiency on strawberry growth, nutrient absorption, and fruit quality during the whole growth period.

Open Access
Authors: , , , , and

Potassium deficiency is a major problem limiting tobacco (Nicotiana tabacum) growth, and grafting has the potential to alleviate it. To compare the photosynthetic performance of grafted tobacco under different potassium levels, tobacco Yunyan 87 (main cultivar) and Wufeng No. 2 (potassium high-efficiency cultivar) were selected to conduct mutual grafting trials in the form of hydroculture with two potassium supply levels (5 mmol·L−1 K and 0.5 mmol·L−1 K). The plant growth, gas exchange parameters, chlorophyll a fluorescence, and the initial ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) activity were measured. The results showed that potassium deficiency could significantly decrease the net photosynthetic rate, stomatal conductance (g S), and transpiration rate in the tobacco leaves, resulting in nonstomatal restriction. Grafting could effectively alleviate this problem. The actual quantum yield of photosystem II (PSII) photochemicals in ‘Yunyan 87’ increased 29.4% and 20.3% by grafting, respectively, under normal and low potassium levels. Compared with nongrafted ‘Yunyan 87’, grafting also effectively improved the electron transfer efficiency of PSII in the tobacco leaves under low potassium stress by reducing nonradiation energy dissipation and enhancing the initial activity of RuBisCO. From this study, it can be known that grafted tobacco plants can improve their photosynthesis by alleviating the nonstomata restriction of leaves under potassium stress and improving the electron transfer efficiency of PSII.

Open Access

MicroRNAs (miRNAs) related to phytohormone signal transduction and self-incompatibility may play an important role in the xenia effect. However, associated research in this area is still lacking in rabbiteye blueberry (Vaccinium ashei). In this study, we identified miRNAs, predicted their target genes, performed functional enrichment analysis of the target genes, and screened for miRNAs related to phytohormone signaling and self-incompatibility. A total of 491 miRNAs were identified, of which 27 and 67 known miRNAs as well as 274 and 416 new miRNAs were found in the rabbiteye blueberry cultivars Brightwell and Premier, respectively. Compared with ‘Premier’, 31 miRNAs were upregulated and 62 miRNAs were downregulated in ‘Brightwell’. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis indicated that the 4985 target genes predicted were involved in biosynthesis of amino acids, plant–pathogen interaction, and spliceosome pathways. A total of 10, one, one, five, two, five, and two candidate miRNAs related to auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinosteroid, and salicylic acid signaling, respectively, in rabbiteye blueberry pollen were identified. Further analysis indicated that novel_miR_49 was a candidate miRNA related to self-incompatibility, and their target gene was maker-VaccDscaff21-snap-gene-21.37. In addition, the KEGG enrichment analysis of the target genes of novel_miR_49 showed that they were involved in the ribosome, aminoacyl-tRNA biosynthesis, and glycosylphosphatidylinositol-anchor biosynthesis pathways. The results revealed that the microRNAs of rabbiteye blueberry pollen regulated to phytohormone signal transduction and self-incompatibility signal transduction based on related to auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinosteroid, and salicylic acid signaling. Results suggest that more research of the effects of miRNAs on regulation of hormone signal transduction and self-incompatibility is necessary for elucidating the molecular mechanism of the xenia effect.

Open Access

Baby primrose (Primula forbesii) is a newly cultivated and valuable ornamental plant with great market potential for both indoor and landscape use. As a container plant, baby primrose has long, weak flower stalks that can easily lodge, resulting in poor-quality plants, especially during transportation. To control plant height and subsequently prevent flower peduncle lodging, we investigated the effects of two plant growth regulators (PGRs), chlormequat chloride (CCC) at 0, 250, 500, or 750 ppm and uniconazole (UNI) at 25, 50, or 75 ppm on growth, development, and flowering of two cultivars of baby primrose, Fragrant Luolan and Red Star. Plant growth regulators at the proposed concentrations were applied twice throughout the experiment. Both PGRs significantly suppressed plant height in both cultivars, with a 16% to 27% reduction by CCC and 50% to 59% by UNI compared with untreated plants. Among CCC-treated groups, plants were shortest when CCC was applied at 500 ppm; plant height was suppressed more when treated with UNI. In both cultivars, UNI significantly suppressed the first, second, and third peduncle lengths. Furthermore, CCC affected peduncle length, but to a lesser extent than UNI. Plant growth regulator applications generally had little effect on flower characteristics of baby primrose. Neither PGRs influenced the inflorescence number and flower size; however, PGRs did increase the number of floral whorls and suppressed pedicel length of ‘Red Star’. New leaf growth was suppressed by both PGRs. In addition, peduncle cell length and width were both significantly suppressed by PGR applications. We concluded that two foliar applications of UNI at 25 ppm comprised the most effective method of controlling baby primrose plant height while maintaining desirable flower traits at a relatively low production cost. Results of this study provide guidance for techniques that can be used to effectively control the plant height of potted baby primrose for commercial greenhouse production.

Open Access

Ascorbic acid (AsA) is a major antioxidant and redox buffer in plants. Dehydroascorbate reductase (DHAR; EC 1.8.5.1) catalyzes the conversion of dehydroascorbate (DHA) to AsA and is crucial for AsA regeneration. In this study, we developed transgenic tomato plants that overexpressed PbDHAR2 to investigate whether PbDHAR2 could limit the deleterious effects of salt and chilling stresses. These transgenic plants contained significantly higher AsA levels than the wild-type (WT) plants. Overexpression of PbDHAR2 increased the expression of the AsA-glutathione (GSH) cycle genes in transgenic lines under salt and chilling stresses. In addition, the transgenic lines subjected to salt and chilling stresses showed higher levels of antioxidant enzyme activity, lower malondialdehyde (MDA) levels, and higher chlorophyll contents than the WT. Thus, our results demonstrate that the regulation of PbDHAR2 during AsA regeneration contributes to enhanced salt and chilling tolerance in tomato.

Free access

Ultraviolet-A (UV-A) is the main component of UV radiation in nature. However, its role on plant growth, to a large extent, remains unknown. In this study, tomato (Solanum lycopersicum ‘Beijing Cherry Tomato’) seedlings were cultivated in an controlled environment in which UV-A radiation was provided by UV-A fluorescent lamps (λmax = 369 nm) with a fluence rate of 2.28 W·m−2. The photoperiod of UV-A radiation was 0, 4, 8, and 16 hours, which corresponds to control, UV-A4, UV-A8, and UV-A16 treatments, respectively. The photosynthetic photon flux density (PPFD) was 220 μmol·m−2·s−1, which was provided by light-emitting diodes (LEDs) with a blue/red light ratio of 1:9, the photoperiod of PPFD was 16 hours. We showed that supplementing 8 and 16 hours of UV-A to visible radiation (400–700 nm) stimulated plant biomass production by 29% and 33%, respectively, compared with that of control. This resulted mainly from larger leaves (i.e., 22% and 31% in 8 and 16 hours UV-A, respectively), which facilitated light capture. Supplemental UV-A also enhanced photosynthetic capacity, as indicated by greater net photosynthesis rates in response to CO2 under saturating PPFD. Furthermore, the greatest stomatal conductance (g S) value was observed in UV-A16, followed by UV-A8, which correlated with the greater stomatal density in the corresponding treatments. Moreover, supplemental UV-A did not induce any stress, as the maximum quantum efficiency of photosynthetic system II (PSII) (F v/F m) remained ≈0.82 in all treatments. Similarly, chlorophyll content and leaf mass area (LMA) were also unaffected by UV-A radiation. Taken together, we conclude that supplementing reasonable levels of UV-A to visible radiation stimulates growth of indoor cultivated tomato seedlings.

Free access