Search Results
MicroRNAs (miRNAs) related to phytohormone signal transduction and self-incompatibility may play an important role in the xenia effect. However, associated research in this area is still lacking in rabbiteye blueberry (Vaccinium ashei). In this study, we identified miRNAs, predicted their target genes, performed functional enrichment analysis of the target genes, and screened for miRNAs related to phytohormone signaling and self-incompatibility. A total of 491 miRNAs were identified, of which 27 and 67 known miRNAs as well as 274 and 416 new miRNAs were found in the rabbiteye blueberry cultivars Brightwell and Premier, respectively. Compared with ‘Premier’, 31 miRNAs were upregulated and 62 miRNAs were downregulated in ‘Brightwell’. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis indicated that the 4985 target genes predicted were involved in biosynthesis of amino acids, plant–pathogen interaction, and spliceosome pathways. A total of 10, one, one, five, two, five, and two candidate miRNAs related to auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinosteroid, and salicylic acid signaling, respectively, in rabbiteye blueberry pollen were identified. Further analysis indicated that novel_miR_49 was a candidate miRNA related to self-incompatibility, and their target gene was maker-VaccDscaff21-snap-gene-21.37. In addition, the KEGG enrichment analysis of the target genes of novel_miR_49 showed that they were involved in the ribosome, aminoacyl-tRNA biosynthesis, and glycosylphosphatidylinositol-anchor biosynthesis pathways. The results revealed that the microRNAs of rabbiteye blueberry pollen regulated to phytohormone signal transduction and self-incompatibility signal transduction based on related to auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinosteroid, and salicylic acid signaling. Results suggest that more research of the effects of miRNAs on regulation of hormone signal transduction and self-incompatibility is necessary for elucidating the molecular mechanism of the xenia effect.
Petalized anther abortion is an important characteristic of male sterility in plants. The male sterile plants (HB-21) evincing petalized anther abortion previously discovered in a clone population of the Camellia oleifera cultivar Huashuo by our research group were selected as the experimental material in this study. Using plant microscopy and anatomic methods and given the correspondence between external morphology and internal structure, we studied the anatomic characteristics of petalized anther abortion (with a fertile plant as the control group) in various stages, from flower bud differentiation to anther maturity, in hopes of providing a theoretical basis for research on and applications of male sterile C. oleifera plants, a new method for the selection of male sterile C. oleifera cultivars, and improvements in the yield and quality of C. oleifera. In this study, the development of anthers in C. oleifera was divided into 14 stages. Petalized anther abortion in male sterile plants was mainly initiated in the second stage (the stage of sporogenous cells). Either the petalized upper anther parts did not form pollen sacs, or the entire anthers did not form pollen sacs. The lower parts of some anthers could form deformed pollen sacs and develop, and these anthers could be roughly divided into two types: fully and partially petalized anthers. Abnormal callose and the premature degradation of the tapetum occurred in the pollen sacs formed by partially petalized anthers during the development process, resulting in the absence of inclusions in the pollen grains formed. Small quantities of mature pollen grains withered inward from the germinal furrows, exhibiting obvious abortion characteristics. The relative in vitro germination rate of the pollen produced by the partially petalized anthers of sterile plants was 11.20%, and the relative activity of triphenyltetrazolium chloride was 3.24%, while the fully petalized anthers did not generate pollen grains. Either the petalized anthers in male sterile plants did not produce pollen, or the vitality of the small amounts of pollen produced by sterile plants was very low compared with that of fertile plants. Such male sterile plants could be used to select correct clones and have good prospects for application in production.
Seedlessness is of commercial importance in citrus (Citrus L.). Seedless ‘Ougan’ mandarin (C. suavissima) was selected from a bud sport mutation that occurred in ‘Ougan’ mandarin. We analyzed their pollen viability through KI-I2 and FDA staining, and examined the anthers of wild-type (seedy) and seedless mutant ‘Ougan’ mandarin using histological and cytochemical methods to characterize the process of pollen development. No pollen fertility was detected in this mutant. Pollen abortion in anthers of the mutant occurred at the tetrad stage of microspore development, and almost all the tetrads were abnormal. The mutant had heterogeneous microspore populations, including monads, dyads, triads, tetrads, and polyads in the same microsporangium. Pollen grain number per anther of the mutant was 21.9% less than the wild type. Morphology of mature pollen grains using SEM showed that the shape of mature pollen grains from both wild type and mutant is similar, but the microsporangia of the latter contained pollen grains of more variable sizes. At the early mature pollen grain stage, abundant starch grains and lipids appeared in the wild type's pollen, but fewer amounts were observed in the mutant. Moreover, the tapetal cells of the wild type accumulated lipids, but not those of the mutant. Results indicated that the abnormal development of the microspore led to pollen abortion in the mutant, and this could be the reason for its seedlessness. However, the genetic reasons for the aberrant tetrads are not clear and are under investigation.
The xenia effect refers to the phenomenon whereby the pollen genotype directly affects seed and fruit development during the period from fertilization to seed germination, which leads to different characteristics in phenotypic traits. The xenia effect can create differences in the endosperm and embryo formed after double fertilization and can also alter various fruit parameters, such as the fruit-ripening period; the fruit shape, size, and color; the flavor quality, such as sugars and acids; as well as the nutrient quality, such as anthocyanins. The xenia effect manifests in various ways, playing an important role in increasing the yield of fruit trees, improving fruit appearance and internal quality, as well as in directional breeding. Compared with other pomology research areas, our understanding of the xenia effect is still in its infancy. Currently, xenia is classified into two types: xenia and metaxenia. In the former, the direct effects of the pollen genotype are exhibited in the syngamous parts of the ovules; that is, the embryo and endosperm only. In the latter, the effects of the pollen genotype are demonstrated in structures other than the embryo and endosperm; that is, in tissues derived wholly from the mother plant material, in seed parts such as the nucellus and testa, as well as in the carpels and accessory tissues. However, the current classification has various shortcomings. In the present study, we propose a novel classification based on whether the appearance of xenia results from the tissue formed by double fertilization. Three xenia types are proposed: double-fertilization xenia, non–double-fertilization xenia, and combined xenia. The new classification has great theoretical and practical significance for future studies on the xenia effect and its mechanisms and also provides a more effective, broader application of xenia in improving the yield and quality of fruit trees.
Berry fruits produced by Vaccinium (Ericaceae) plants are small but have a signature flavor and have become increasingly popular in the 21st century. However, self-incompatibility (SI) results in a relatively low fruit-set ratio and reduced fruit quality in Vaccinium. In this study, using Vaccinium ashei (V. ashei) styles after cross-pollination (CP) and self-pollination (SP) as material, transcriptomics and gene expression analyses were performed using high-throughput RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, evolutionary analysis and conserved sequences analysis of candidate genes were conducted. Among the 135,324 unigenes, 30,863 were shown to be differentially expressed, and eight randomly selected differentially expressed genes were expressed in the styles at 96 hours after SP and CP. The transcriptomics and qRT-PCR results were significantly correlated, which confirmed the reliability of the differentially expressed genes obtained in our study. Compared with SP96, six differentially expressed ribonuclease T2 family genes were obtained in CP96, which were considered candidates for S-RNase. Additionally, the spatiotemporal and organizational expression trends of six candidates for S-RNase were confirmed by qRT-PCR, and the evolutionary and conservative sequence analysis indicated six candidate S-RNases with the typical S-RNase structure. The spatiotemporal and organizational expression results and evolutionary and conservative sequence analyses of the six candidate S-RNases suggest that SI in V. ashei is likely an S-RNase-mediated gametophytic one. This finding suggests the involvement of novel, previously undiscovered components involved in the V. ashei SI system. These findings help elucidate the molecular mechanisms of SI in rabbiteye blueberry and may also benefit breeding, production, and genomics research in V. ashei and other Vaccinium species.