Search Results
Common ice plant (Mesembryanthemum crystallinum L.) is a novel edible succulent plant with savory flavor. It has epidermal bladder cells (EBCs) that store water and sodium chloride (NaCl) located on the epidermis of the leaves and stems. Ice plant is an obligatory halophyte that requires NaCl for optimum growth. The objective of this study was to determine the impact of NaCl on growth of ice plant for hydroponic production as an edible leafy green and to quantify the ability of ice plant to take up NaCl from the environment. Four-week-old seedlings of ice plant were transplanted into hydroponic systems, established for 1 week, and given five NaCl treatments [0 M (control), 0.05 M, 0.10 M, 0.20 M, 0.40 M NaCl]. Sequential destructive harvests to determine plant growth occurred at day 7, 14, and 21 after NaCl treatment. The 0.05 M NaCl had the greatest stimulating effect on biomass, increasing total fresh weight (FW) by 173% and shoot FW by 193% compared with the control plants. The 0.10 M NaCl also had stimulating effect as compared with 0 M, but plants were not as large as those receiving 0.05 M NaCl. The 0.20 M NaCl had little effect on plant growth compared with the control. The 0.40 M NaCl had a strong stunting effect on plant growth. All plants treated with NaCl had less root weight than the control, and higher NaCl concentration resulted in greater reduction in root weight. However, for the 0.05 and 0.10 M treatment, the gain in shoot weight exceeded the loss in root weight. Plants gained or lost water in a faster rate than dry mass, which resulted in larger differences among treatments in FW than in dry weight (DW). Plants treated with higher NaCl concentrations developed fewer, smaller, and thicker leaves but contained more EBCs per unit leaf surface area. There was high Na and Cl accumulation in leaf tissues of all salt-treated plants (e.g., 180,507 mg·kg−1 Na and 125,084 mg·kg−1 Cl in the 0.05 M treatment vs. 13,558 mg·kg−1 Na and 12,991 mg·kg−1 Cl in the 0 M treatment). This indicated potential for bioremediation of saline soil or hydroponic water. Concentrations of macronutrients such as nitrogen (N), phosphorus (P), calcium (Ca), magnesium (Mg), and sulfur (S) were reduced when plants received increasing NaCl treatments. In general, this study showed that growth of ice plant benefited from 0.05 and 0.10 M NaCl additions to the hydroponic nutrient solution. Ice plant deserves further work on its ability to reduce Na and Cl from accumulating in recirculating hydroponic nutrient solution.