Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jianhui Cheng x
Clear All Modify Search

Ficus carica Linn. is an important economic tree species with high developmental prospects and scientific research for edible and medicinal value. The F. carica chloroplast genome has recently been reported; however, the mitochondrial genome is still unexplored. We assembled the complete mitogenome of F. carica using reads from PacBio Biosciences sequencing platforms. The circular mitogenome F. carica has a length of 480,902 base pairs (bp), which contain 46 genes, including 27 protein-coding genes, 16 transfer RNA (tRNA) genes, and three ribosomal RNA (rRNA) genes. The base composition, codon usage, sequence repeats, RNA editing, and selective pressure were examined. We also conducted the phylogenetic analysis based on the mitogenomes of F. carica and 21 other taxa to know the evolutionary and taxonomic status of F. carica. Our analyses provided comprehensive information on the F. carica mitochondrial genome, which would facilitate evolutionary research in other fruit trees in the future.

Open Access

Albino tea plants are mutants that grow albino young leaves owing to lack of chlorophylls under certain environmental conditions. There are two types of albino tea plants grown in production, i.e., light- and temperature-sensitive albino tea cultivars. The former grows albino leaves in yellow color under intensive sunlight conditions and the later grows albino leaves with white mesophyll and greenish vein as the environmental temperature is below 20 °C. Both albino teas attract great attention because of their high levels of amino acids and the “umami” taste. There have been many studies focusing on the temperature-sensitive albino tea plants, whereas little attention has been given to the light-sensitive albino tea cultivars. The characteristics of the albino tea cultivars and the mechanism underlying them were reviewed in the present article based on the published literatures, including chemical compositions, morphological characteristics, and molecular genetic mechanism.

Free access