Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Jiangyan Fu x
Clear All Modify Search

From a field experiment, the changes in morphophysiological characters and antioxidant enzyme activities were studied in two Lycoris species (Lycoris radiata and Lycoris aurea) subjected to 16 days of water deficit stress. With the increase of water deficit stress processing time, leaf relative water content (RWC), membrane stability index (MSI), net photosynthesis (Pn), stomatal conductance (g S), transpiration rate (E), and chlorophyll (Chl) content decreased in both studied species. The water use efficiency (WUE) showed an opposite tendency between the two species under water deficit stress, where WUE of L. aurea decreased moderately and WUE of L. aurea increased somehow. Intercellular CO2 concentration (C i) in L. aurea and L. radiata decreased in respond to water deficit stress at early stages of stress treatment, then increased throughout the rest of the stress period, and reached levels higher than those in well-watered plants at the end of the treatment. In addition, there was a significant increment in soluble sugar content and proline accumulation under water deficit stress in both species, and L. radiata showed a much more accumulation. The activity of superoxide dismutase (SOD), guaiacol peroxidase (POD), and ascorbate peroxidase (APX) increased in both plants subjected to water deficit stress while declined as the stress time increased. In L. aurea, catalase (CAT) showed a sustained increment, but it responded later and after a transient increase declined again in L. radiata under water deficit stress. In conclusion, L. radiata was more tolerant to water deficit stress than L. aurea as evidenced by its relatively higher water status, higher levels of proline, soluble sugar and pigments, and stronger photoprotection. Moreover, relatively higher antioxidant enzyme activities and lower levels of thiobarbituric acid reactive substances (TBARS) in L. radiata were also associated with its better protection against water deficit stress-induced oxidative damage.

Free access