Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jian-rong Feng x
Clear All Modify Search

‘Korla’ fragrant pear (Pyrus sinkiangensis T.T. Yu) variety has shown severe coarse skin in recent years. The intrinsic quality of its coarse fruit shows an increase in the number of stone cells and poor taste. In this study, stone cells and the cell wall of coarse pear (CP) and normal pear (NP) during various development stages were compared using paraffin-sectioning and transmission electron microscopy (TEM), and the relationships between lignin-related genes and stone cell formation and cell wall thickening were also analyzed. Our results show that giant stone cells are formed and distributed in the core of pear, whereas many of these crack 60 days after flowering (DAF). The period of stone cell fragmentation occurs later in CP fruits than in NP fruits. Parenchyma cell wall development in CP and NP fruits varies from 120 DAF to maturity. The parenchyma cell wall of CP fruits thickens, whereas that of NP fruits is thinner during the same period. The expression pattern of five genes (Pp4CL1-l, PpHCT-l, Pp4CL2-l, PpPOD4, and PpPOD25) coincides with changes in stone cell content in the pulp. Correlation analysis demonstrates a significant correlation between stone cell content and the expression level of the five genes (ρ < 0.05). In addition, the expression of those five genes and PpCCR1 genes in CP fruits significantly increases during maturation and is highly correlated with the thickness of the parenchyma cell wall. The aim of this work is to provide insights into the mechanism of stone cell and parenchyma cell wall development in pear fruits and identify important candidate genes to regulate the quality of fruit texture using bioengineering methods.

Open Access

The characterization of aroma of the 14 main apricot (Prunus armeniaca L.) cultivars in Xinjiang was evaluated using high-performance solid-phase microextraction (HP-SPME) with gas chromatography-mass spectroscopy (GC-MS). A total of 208 volatiles that include 80 esters, 25 aldehydes, 15 terpenes, 21 ketones, 39 alcohols, 27 olefins, and 1 acid were identified from these cultivars. The compounds propyl acetate, 3-methyl-1-butanol acetate, (Z)-3-hexen-1-ol acetate, d-limonene, β-linalool, hexanal, hexyl acetate, butyl acetate, β-myrcene, ethyl butanoate, and β-cis-ocimene were the major compounds responsible for aroma in these cultivars. GC-MS results showed that Kuchexiaobaixing, Guoxiyuluke, and seven other cultivars were characterized by a high level of esters and were considered to be fruity apricot aroma. ‘Luotuohuang’ and ‘Heiyexing’ accumulate high levels of terpenes and exhibited an outstanding floral aroma. Higher levels of alcohols and aldehydes were observed in ‘Danxing’, ‘Sumaiti’, and ‘Kumaiti’. The latter are considered green aroma cultivars. These three types of cultivars with different aroma characteristics can be significantly differentiated by using the principal component analysis (PCA) method. The contributions of volatiles to the apricot aroma were assessed by using the partial least squares regression (PLSR) model. Esters, terpenes, and C6 components were shown to be responsible for the fruity, floral, and green character of fresh apricots, respectively.

Free access

Three kinds of expression vectors of a pollen-S determinant were constructed to provide a reference for molecular breeding of self-compatible (SC) Prunus species. An S-haplotype-specific F-box (SFB) protein gene from the ‘Xiaobaixing’ apricot (Prunus armeniaca) was cloned by reverse transcription polymerase chain reaction (RT-PCR) and 3′-rapid-amplification of cDNA ends (3′-RACE). A 1136-bp sequence complementary to the 3′-end of the cDNA (GenBank accession number KP938528.2) with a 912-bp complete open reading frame (ORF) was obtained. The deduced amino acid sequence contained an F-box domain, two variable regions, and two hypervariable regions with structural characteristics similar to SFB in other Rosaceae plants. Sense, antisense, and RNA interference (RNAi) vectors for SFB were constructed by enzyme restriction. The target fragment was restricted using the corresponding restriction enzyme and then directionally inserted between the 35S cauliflower mosaic virus promoter and the nopaline synthase terminator (NOS-ter) of the expression vector pCAMBIA-35S-MCS-NOS-NPTII. The intron-containing hairpin RNA (ihpRNA) was obtained by fusion PCR. The constructed vectors were transferred into Agrobacterium tumefaciens strain LBA4404 by freezing/thawing. The RNAi vector of SFB was also transformed in tobacco (Nicotiana tabacum). The successful construction of these three expression vectors provides a basis for transforming ‘Xiaobaixing’ apricot and the breeding of SC Prunus cultivars.

Free access