Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jian-Hui Ye x
Clear All Modify Search

Fresh fruit of longan (Dimocarpus longan Lour.) are susceptible to pericarp browning and aril breakdown. Aril breakdown in longan fruit is regarded as one of the most important factors reducing quality and shortening storage life of the fruit. To better understand the molecular mechanism of aril breakdown, the expression patterns of three expansin (EXP) and three xyloglucan endotransglucosylase (XET) genes in relation to the aril breakdown of longan fruit stored at room temperature (25 °C) or low temperature (4 °C) were investigated. The results showed that aril breakdown index increased progressively during storage at 25 and at 4 °C. Northern blotting analysis revealed that the accumulations of three EXP and three XET genes exhibited differential characteristics with the occurrence of aril breakdown. During storage at 25 °C, the accumulations of Dl-XET3 increased after 1 day, suggesting that Dl-XET3 correlated well with the early aril breakdown, while Dl-EXP3 together with Dl-XET1 and Dl-XET2 was involved in later aril breakdown. However, expression of Dl-XET1 and Dl-XET2 could be mainly involved in aril breakdown of longan fruit stored at 4 °C. In addition, Dl-EXP2, whose accumulation increased sharply when longan fruit were transferred from low temperature to room temperature within 12 hours, was related to the aril breakdown in this storage period. These data indicated that Dl-EXPs and Dl-XETs were closely related to aril breakdown in longan fruit.

Free access

Albino tea plants are mutants that grow albino young leaves owing to lack of chlorophylls under certain environmental conditions. There are two types of albino tea plants grown in production, i.e., light- and temperature-sensitive albino tea cultivars. The former grows albino leaves in yellow color under intensive sunlight conditions and the later grows albino leaves with white mesophyll and greenish vein as the environmental temperature is below 20 °C. Both albino teas attract great attention because of their high levels of amino acids and the “umami” taste. There have been many studies focusing on the temperature-sensitive albino tea plants, whereas little attention has been given to the light-sensitive albino tea cultivars. The characteristics of the albino tea cultivars and the mechanism underlying them were reviewed in the present article based on the published literatures, including chemical compositions, morphological characteristics, and molecular genetic mechanism.

Free access