Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Jia Chen x
  • Refine by Access: All x
Clear All Modify Search
Free access

Da-Peng Zhang, Zi-Lian Zhang, Jia Chen, and Jiang Lu

The abscisic acid (ABA) has a key role in the regulation of grapevine fruit ripening, but the cellular and molecular biological mechanism of the hormone action in the fruit ripening remains unknown. By means of differential centrifugation, microsomes were prepared from Kyoho grapevine (Vitis vinifera L. × V. Labrusca L.) berries, and using the microsomes, we have obtained evidence for the occurrence of specific ABA-binding sites on the membranes with the microvolume radio-ligand binding assay. The binding sites had saturability, high affinity, and low capacity. The results of trypsin and dithiothreitol treatments to the microsomes suggested that ABA binding sites had the properties of proteins that might have disulfide group located at or near the binding site. The binding maximum amount of ABA in the microsomes was at pH 6.0 and the activity of ABA binding proteins was higher at 25 than at 0°C (temperature). The amount of ABA bound reached 54% of the ABA binding maximum (Bmax) for 10 minutes of incubation and Bmax reached for 30 minutes. The dissociation constant (Ka) and Bmax of ABA binding proteins in the microsomes were 17.5 nmol/L and 98.4 fmol/mg protein, respectively.

Free access

Yang Yang, Zhongkui Jia, Faju Chen, Ziyang Sang, and Luyi Ma

The rare species Magnolia wufengensis frequently suffers from freezing injury in northern China. To investigate the influence of exogenous abscisic acid (ABA) application on the natural cold acclimation of M. wufengensis, physiological and biochemical changes in field-grown M. wufengensis seedlings subjected to foliar ABA treatments at four concentrations (0, 300, 600, and 900 mg·L−1) were evaluated from Sept. 2012 to Jan. 2013. The optimum foliar application concentrations of ABA for M. wufengensis were between 600 and 900 mg·L−1, which led to faster shoot growth cessation, leaf senescence, and development rates of bud endodormancy level and shoot freezing tolerance. The improved freezing tolerance under exogenous ABA application was associated with promoted dehydration and accumulation of proline, soluble protein, and certain soluble sugars such as glucose and fructose. Foliar ABA treatments initiated a cascade of steps for advancing the cold acclimation process of M. wufengensis. We suggest that exogenous ABA application may be used on M. wufengensis grown in northern China, where there are short growing seasons and early fall frost events.

Free access

Da-Peng Zhang, Zi-Lian Zhang, Jia Chen, and Jiang Lu

By using the micro-volume radio-ligand binding essay, the changes in the kinetic characteristics of the abscisic acid (ABA)-binding protein(s) of the Kyhoh grapevine (Vitis vinifera × V. labrusca) fruit during the different stages of fruit development have been studied. The changes in the berry volume growth, concentration of sugar, organic acids, and ABA in fruit mesocarp have been surveyed, especially for studies of ABA-binding protein. The dissociation constant (Kd) and ABA binding maximum (Bmax) were determined by the Scatchard plots for ABA binding in microsomes of the fruit. They are Kd = 17.5, 50.0, 6.3, 13.3 nmol·L–1; Bmax = 98.6, 523.0, 41.6, 85.4 μmol·mg–1 protein, respectively, for the fruit developmental phase I, II, veraison, and phase III. The Scatchard plots showed a rectilinear function for all of the developmental phases including veraison, which suggests the sole ABA-binding site of high affinity for ABA in the fruit microsomes, but this site could either be only one kind of the same protein or consist of more kinds of different proteins for different developmental stages. The binding affinity of ABA-binding protein(s) for ABA was shown to be higher at veraison time than during other developmental phases; this binding affinity increased nearly by 10 times from phase II to veraison, while the concentration (Bmax) of the ABA-binding protein(s) decreased to the minimum at veraison. The very low concentration of ABA at veraison may be able to trigger the onset of fruit ripening due to the increase of the binding affinity of ABA-binding protein(s) for ABA at this time. The possible functions of the ABA-binding protein(s) for fruit development during the different developmental stages were discussed, and it is suggested that the protein(s) detected could be the putative ABA receptor(s) or transporter(s) for the action of this plant hormone in grapevine.

Free access

Lian-wei Qu, Gui-mei Xing, Juan-juan Chen, Jia-jun Lei, and Yan-qiu Zhang

Open access

Jiming Liu, Caowen Sun, Yuan Gao, Zhong Chen, Yulin Zheng, Xuehuang Weng, and Liming Jia

Full access

Vanessa E.T.M. Ashworth, Haofeng Chen, Carlos L. Calderón-Vázquez, Mary Lu Arpaia, David N. Kuhn, Mary L. Durbin, Livia Tommasini, Elizabeth Deyett, Zhenyu Jia, Michael T. Clegg, and Philippe E. Rolshausen

The glossy, green-fleshed fruit of the avocado (Persea americana) has been the object of human selection for thousands of years. Recent interest in healthy nutrition has singled out the avocado as an excellent source of several phytonutrients. Yet as a sizeable, slow-maturing tree crop, it has been largely neglected by genetic studies, owing to a long breeding cycle and costly field trials. We use a small, replicated experimental population of 50 progeny, grown at two locations in two successive years, to explore the feasibility of developing a dense genetic linkage map and to implement quantitative trait locus (QTL) analysis for seven phenotypic traits. Additionally, we test the utility of candidate-gene single-nucleotide polymorphisms developed to genes from biosynthetic pathways of phytonutrients beneficial to human health. The resulting linkage map consisted of 1346 markers (1044.7 cM) distributed across 12 linkage groups. Numerous markers on Linkage Group 10 were associated with a QTL for flowering type. One marker on Linkage Group 1 tracked a QTL for β-sitosterol content of the fruit. A region on Linkage Group 3 tracked vitamin E (α-tocopherol) content of the fruit, and several markers were stable across both locations and study years. We argue that the pursuit of linkage mapping and QTL analysis is worthwhile, even when population size is small.