Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Ji Jhong Chen x
  • Refine by Access: All x
Clear All Modify Search
Open access

Ji-Jhong Chen, Shuyang Zhen, and Youping Sun

Commercial optical chlorophyll meters estimate relative chlorophyll content using the ratio of transmitted red light and near-infrared (NIR) light emitted from a red light-emitting diode (LED) and an NIR LED. Normalized difference vegetation index (NDVI) sensors have red and NIR light detectors and may be used to estimate chlorophyll content by detecting the transmitted red and NIR light through leaves. In this study, leaf chlorophyll content of ‘Torrey’ buffaloberry (Shepherdia ×utahensis) plants treated with 0 mm [zero nitrogen (N)], 2 mm (medium N), or 4 mm (ample N) ammonium nitrate for 3 weeks were evaluated using two commercial chlorophyll meters and NDVI sensors. The absolute chlorophyll content was determined using chlorophyll extraction. Our results showed that plants receiving ample N and medium N had decreased transmitted red light (i.e., greater absorption in red light). Measurements of optical chlorophyll meters, NDVI sensors, and chlorophyll extraction similarly showed that plants receiving medium N and ample N had greater leaf chlorophyll content than those receiving zero N. Relative leaf chlorophyll content estimated using NDVI sensors correlated positively with those from the chlorophyll meters (P < 0.0001; r2 range, 0.56–0.82). Therefore, our results indicate that NDVI measurements are sensitive to leaf chlorophyll content. These NDVI sensors, or specialized sensors developed using similar principles, can be used to estimate the relative chlorophyll content of nursery crops and help growers adjust fertilization to improve plant growth and nutrient status.

Open access

Ji Jhong Chen, Haifeng Xing, Asmita Paudel, Youping Sun, Genhua Niu, and Matthew Chappell

More than half of residential water in Utah is used for landscape irrigation. Reclaimed water has been used to irrigate urban landscapes to conserve municipal water. High salt levels in reclaimed water may pose osmotic stress and ion toxicity to salt-sensitive plants. Viburnums are commonly used landscape plants, but salinity tolerance of species and cultivars is unclear. The objective of this study was to characterize gas exchanges and mineral nutrition responses of 12 viburnum taxa subjected to salinity stress in a greenhouse study. Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.3 dS·m–1 or saline solution at an EC of 5.0 dS·m–1 or 10.0 dS·m–1. The net photosynthesis rate (Pn), stomatal conductance (g S), and transpiration rate (E) of all viburnum taxa, except for Viburnum ×burkwoodii and V. בNCVX1’, decreased to various degrees with increasing salinity levels. The Pn, g S, and E of V. ×burkwoodii and V. בNCVX1’ were unaffected by saline solutions of 5.0 dS·m–1 at the 4th and 9th week after treatment initiation, with the exception of the Pn of V. ×burkwoodii, which decreased at the 9th week. Leaf sodium (Na+) and chloride (Cl) concentrations of all viburnum taxa increased as salinity levels increased. Viburnum ×burkwoodii had relatively low leaf Na+ and Cl when irrigated with saline solutions of 10.0 dS·m–1. Plant growth and gas exchange parameters, including visual score, plant height, Pn, g S, E, and water use efficiency (WUE) correlated negatively with leaf Na+ and Cl concentrations. The ratio of potassium (K+) to Na+ (K+/Na+) and ratio of calcium (Ca2+) to Na+ (Ca2+/Na+) decreased when salinity levels increased. Visual score, plant height, Pn, g S, E, and WUE correlated positively with the K+/Na+ and Ca2+/Na+ ratios. These results suggest excessive Na+ and Cl accumulation inhibited plant photosynthesis and growth, and affected K+ and Ca2+ uptake negatively.

Open access

Youping Sun, Ji Jhong Chen, Haifeng Xing, Asmita Paudel, Genhua Niu, and Matthew Chappell

Viburnums are widely used in gardens and landscapes throughout the United States. Although salinity tolerance varies among plant species, research-based information is limited on the relative salt tolerance of viburnum species. The morphological and growth responses of 12 viburnum taxa to saline solution irrigation were evaluated under greenhouse conditions. Viburnum taxa included Viburnum ×burkwoodii, V. cassinoides ‘SMNVCDD’, V. dentatum ‘Christom’, V. dentatum var. deamii ‘SMVDLS’, V. dilatatum ‘Henneke’, V. בNCVX1’, V. nudum ‘Bulk’, V. opulus ‘Roseum’, V. plicatum var. tomentosum ‘Summer Snowflake’, V. pragense ‘Decker’, V. ×rhytidophylloides ‘Redell’, and V. trilobum. A nutrient solution at an electrical conductivity (EC) of 1.3 dS·m−1 (control) or saline solutions at ECs of 5.0 and 10.0 dS·m−1 were applied eight times over a 9-week period. Growth, visual quality, and morphological characteristics were quantified at the 4th week and 8th–9th week to assess the impact of salinity stress on the viburnum taxa. Saline solution irrigation imposed detrimental salinity stress on viburnum plant growth and visual quality, and the degree of salt damage was dependent on the salinity levels of irrigation solution and the length of exposure to salinity stress as well as viburnum taxa. Viburnum ×burkwoodii and V. בNCVX1’ had little foliar salt damage during the entire experiment, except those irrigated with saline solution at an EC of 10.0 dS·m−1 exhibited slight to moderate foliar salt damage at the eighth week. Viburnum dilatatum ‘Henneke’, V. plicatum var. tomentosum ‘Summer Snowflake’, and V. trilobum irrigated with saline solution at an EC of 5.0 dS·m−1 had slight and severe foliar salt damage at the 4th and 8th week, respectively. Plants irrigated with saline solution at an EC of 10.0 dS·m−1 exhibited severe foliar salt damage at the 4th week, and all died by the 8th week. Other viburnum taxa also showed various foliar salt damage, especially at an EC of 10.0 dS·m−1. The shoot dry weights of V. ×burkwoodii and V. בNCVX1’ irrigated with saline solution at ECs of 5.0 and 10.0 dS·m−1 were similar to those in the control at both harvest dates. However, the shoot dry weight of other tested viburnum taxa decreased to some extent at the 9th week. A cluster analysis concluded that V. ×burkwoodii and V. בNCVX1’ were considered the most salt-tolerant viburnum taxa, whereas V. dilatatum ‘Henneke’, V. plicatum var. tomentosum ‘Summer Snowflake’, and V. trilobum were sensitive to salinity levels used in this study. This research may guide the green industry to choose relatively tolerant viburnum taxa for landscape use and nursery production where low-quality water is used for irrigation.

Full access

Asmita Paudel, Ji Jhong Chen, Youping Sun, Yuxiang Wang, and Richard Anderson

Sego SupremeTM is a designated plant breeding and introduction program at the Utah State University Botanical Center and the Center for Water Efficient Landscaping. This plant selection program introduces native and adapted plants to the arid West for aesthetic landscaping and water conservation. The plants are evaluated for characteristics such as color, flowering, ease of propagation, market demand, disease/pest resistance, and drought tolerance. However, salt tolerance has not been considered during the evaluation processes. Four Sego SupremeTM plants [Aquilegia barnebyi (oil shale columbine), Clematis fruticosa (Mongolian gold clematis), Epilobium septentrionale (northern willowherb), and Tetraneuris acaulis var. arizonica (Arizona four-nerve daisy)] were evaluated for salt tolerance in a greenhouse. Uniform plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.25 dS·m−1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dS·m−1 for 8 weeks. After 8 weeks of irrigation, A. barnebyi irrigated with saline solution at an EC of 5.0 dS·m−1 had slight foliar salt damage with an average visual score of 3.7 (0 = dead; 5 = excellent), and more than 50% of the plants were dead when irrigated with saline solutions at an EC of 7.5 and 10.0 dS·m−1. However, C. fruticosa, E. septentrionale, and T. acaulis had no or minimal foliar salt damage with visual scores of 4.2, 4.1, and 4.3, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. As the salinity levels of treatment solutions increased, plant height, leaf area, and shoot dry weight of C. fruticosa and T. acaulis decreased linearly; plant height of A. barnebyi and E. septentrionale also declined linearly, but their leaf area and shoot dry weight decreased quadratically. Compared with the control, the shoot dry weights of A. barnebyi, C. fruticosa, E. septentrionale, and T. acaulis decreased by 71.3%, 56.3%, 69.7%, and 48.1%, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. Aquilegia barnebyi and C. fruticosa did not bloom during the experiment at all treatments. Elevated salinity reduced the number of flowers in E. septentrionale and T. acaulis. Elevated salinity also reduced the number of shoots in all four species. Among the four species, sodium (Na+) and chloride (Cl) concentration increased the most in A. barnebyi by 53 and 48 times, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. In this study, C. fruticosa and T. acaulis had minimal foliar salt damage and less reduction in shoot dry weight, indicating that they are more tolerant to salinity. Epilobium septentrionale was moderately tolerant to saline solution irrigation with less foliar damage, although it had more reduction in shoot dry weight. On the other hand, A. barnebyi was the least tolerant with severe foliar damage, more reduction in shoot dry weight, and a greater concentration of Na+ and Cl.

Open access

Ji Jhong Chen, Yuxiang Wang, Asmita Paudel, and Youping Sun

Screening salinity-tolerant plants is usually time intensive and only applicable to a limited number of salinity levels. A near-continuous gradient dosing (NCGD) system allows researchers to evaluate a large number of plants for salinity tolerance with multiple treatments, more flexibility, and reduced efforts of irrigation. Rose of sharon (Hibiscus syriacus), ninebark (Physocarpus opulifolius), and japanese spirea (Spiraea japonica) were irrigated using an NCGD system with eight electrical conductivity (EC) levels ranging from 0.9 to 6.5 dS·m–1. At 11 weeks after irrigation was initiated, there were no significant differences among EC levels in terms of visual score, growth index [(Height + Width 1 + Width 2)/3], stem diameter, number of inflorescences, and shoot dry weight (DW) of rose of sharon. However, the root DW, relative chlorophyll content (SPAD), and net photosynthesis rate (Pn) of rose of sharon decreased linearly as EC levels increased. Ninebark and japanese spirea had increased foliar salt damage with increasing EC levels. The growth index, stem diameter, number of inflorescences, shoot and root DW, SPAD, and Pn of ninebark decreased linearly as EC levels increased. The growth index and SPAD of japanese spirea decreased quadratically with increasing EC levels, but its stem diameter, number of inflorescences, shoot and root DW, and Pn decreased linearly with increasing EC levels. The salinity threshold (50% loss of shoot DW) was 5.4 and 4.6 dS·m–1, respectively, for ninebark and japanese spirea. We were not able to define the salinity threshold for rose of sharon in this study. However, rose of sharon was the most salinity-tolerant species among the three landscape plants.

Open access

Ji-Jhong Chen, Heidi Kratsch, Jeanette Norton, Youping Sun, and Larry Rupp

Shepherdia ×utahensis ‘Torrey’ (‘Torrey’ hybrid buffaloberry) is an actinorhizal plant that can fix atmospheric nitrogen (N2) in symbiotic root nodules with Frankia. Actinorhizal plants with N2-fixing capacity are valuable in sustainable nursery production and urban landscape use. However, whether nodule formation occurs in S. ×utahensis ‘Torrey’ and its interaction with nitrogen (N) fertilization remain largely unknown. Increased mineral N in fertilizer or nutrient solution might inhibit nodulation and lead to excessive N leaching. In this study, S. ×utahensis ‘Torrey’ plants inoculated with soils containing Frankia were irrigated with an N-free nutrient solution with or without added 2 mm ammonium nitrate (NH4NO3) or with 0.0 to 8.4 g·L−1 controlled-release fertilizer (CRF; 15N–3.9P–10K) to study nodulation and plant morphological and physiological responses. The performance of inoculated plants treated with various amounts of CRF was compared with uninoculated plants treated with the manufacturer’s prescribed rate. Plant growth, gas exchange parameters, and shoot N content increased quadratically or linearly along with increasing CRF application rates (all P < 0.01). No parameters increased significantly at CRF doses greater than 2.1 g·L−1. Furthermore, the number of nodules per plant decreased quadratically (P = 0.0001) with increasing CRF application rates and nodule formation were completely inhibited at 2.9 g·L−1 CRF or by NH4NO3 at 2 mm. According to our results, nodulation of S. ×utahensis ‘Torrey’ was sensitive to N in the nutrient solution or in increasing CRF levels. Furthermore, plant growth, number of shoots, leaf area, leaf dry weight, stem dry weight, root dry weight, and N content of shoots of inoculated S. ×utahensis ‘Torrey’ plants treated with 2.1 g·L−1 CRF were similar to those of uninoculated plants treated with the manufacturer’s prescribed rate. Our results show that S. ×utahensis ‘Torrey’ plants inoculated with soil containing Frankia need less CRF than the prescribed rate to maintain plant quality, promote nodulation for N2 fixation, and reduce N leaching.

Open access

Ji-Jhong Chen, Jeanette Norton, Heidi Kratsch, Youping Sun, and Larry Rupp

Shepherdia ×utahensis ‘Torrey’ (hybrid buffaloberry) is an actinorhizal plant that can form symbiotic nodules with the actinobacterial genus Frankia. However, little research has been conducted to investigate the presence of Frankia in their nodules and the effects on plant growth. In this study, plants were grown in a Metro-Mix® 820 substrate and inoculated with soils collected from Mohave County, AZ, or in a low organic-matter substrate inoculated with soils from North Logan, UT. The presence of Frankia was quantified using PolF/PolR primers to amplify their nitrogenase (nifH) gene sequences. In the Metro-Mix 820 substrate, plants irrigated with nitrogen (N)-free Hoagland’s solution at pH 6.5 formed nodules at week 12 after experiment initiation, whereas those receiving the same solution with 2 mm ammonium nitrate (NH4NO3) appeared healthy, but no nodules formed. In the low organic-matter substrate, nodules formed in 5 weeks when plants were irrigated with N-free Hoagland’s solution at pH 7.5. Four 300-bp fragments of query sequences (SU1, SU2, SU3, and SU4) were obtained from nodules. When compared with nifH gene sequences reported in the literature using the Basic Local Alignment Search Tool (BLAST), more than 90% similarity to the nifH of Frankia spp. was obtained. The Frankia strains in the nodules shared nifH sequences similar to those of the same host-specific group of Shepherdia. Furthermore, Frankia strains with similar nifH genes have been reported in nodules of Shepherdia argentea (silver buffaloberry). Additionally, Frankia strains belonging to cluster 3 infective strains consisting of Elaeagnaceae and Rhamnaceae infective Frankia showed high similarity to the query sequences. This research demonstrates that nodulation of S. ×utahensis is inhibited at 2 mm NH4NO3. Apart from N, nodule formation may be associated with the substrate type and pH of the nutrient solution. Based on nifH gene sequence amplification, Frankia strains in the root nodules may have the potential to fix atmospheric nitrogen (N2). These Frankia strains have signature gene sequence characteristics of Elaeagnaceae-infective Frankia, suggesting that S. ×utahensis shares Frankia strains similar to its parents.

Open access

Haifeng Xing, Julie Hershkowitz, Asmita Paudel, Youping Sun, Ji Jhong Chen, Xin Dai, and Matthew Chappell

Reclaimed water provides a reliable and economical alternative source of irrigation water for landscape use but may have elevated levels of salts that are detrimental to sensitive landscape plants. Landscape professionals must use salt-tolerant plants in regions where reclaimed water is used. Ornamental grasses are commonly used as landscape plants in the Intermountain West of the United States due to low maintenance input, drought tolerance, and unique texture. Six ornamental grass species, including Acorus gramineus (Japanese rush), Andropogon ternarius (silver bluestem), Calamagrostis ×acutiflora (feather reed grass), Carex morrowii (Japanese sedge), Festuca glauca (blue fescue), and Sporobolus heterolepis (prairie dropseed), were evaluated for salinity tolerance. Plants were irrigated every 4 days with a fertilizer solution at an electrical conductivity (EC) of 1.2 dS·m–1 (control) or with a saline solution at an EC of 5.0 dS·m–1 (EC 5) or 10.0 dS·m–1 (EC 10). At 47 days, most species in EC 5 exhibited good visual quality with averaged visual scores greater than 4.6 (0 = dead, 5 = excellent). In EC 10, most A. gramineus plants died, but C. ×acutiflora, F. glauca, and S. heterolepis had no foliar salt damage. At 95 days, C. ×acutiflora, F. glauca, and S. heterolepis in EC 5 had good visual quality with averaged visual scores greater than 4.5. Acorus gramineus, A. ternarius, and C. morrowii showed foliar salt damage with averaged visual scores of 2.7, 3.2, and 3.4, respectively. In EC 10, A. gramineus died, and other grass species exhibited moderate to severe foliar salt damage, except C. ×acutiflora, which retained good visual quality. Plant height, leaf area, number of tillers, shoot dry weight, and/or gas exchange parameters also decreased depending on plant species, salinity level, and the duration of exposure to salinity stress. In conclusion, A. gramineus was the most salt-sensitive species, whereas C. ×acutiflora was the most salt-tolerant species. Festuca glauca and S. heterolepis were more tolerant to salinity than A. ternarius and C. morrowii. Calamagrostis ×acutiflora, F. glauca, and S. heterolepis appear to be more suitable for landscapes in which reclaimed water is used for irrigation. Plant responses to saline water irrigation in this research could also be applied to landscapes in salt-prone areas and coastal regions with saltwater intrusion into aquifers and landscapes affected by maritime salt spray.