Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jenny C. Moore x
Clear All Modify Search
Restricted access

Jenny C. Moore and Annette L. Wszelaki

Plasticulture systems with polyethylene (PE) mulch and drip tape are common for production of peppers (Capsicum annuum L.) in the United States because of their soil warming, moisture conservation, and other advantageous effects. However, disadvantages include disposal costs and plastic pollution of the environment and temperature stress in warm climates with black mulch. Use of biodegradable plastic mulches (BDMs) is becoming more common, as they provide the same benefits of PE mulch without the disposal problems. In 2017 and 2018, we conducted experiments in Knoxville, TN, comparing production of pepper fruit with five different BDM [one white-on-black (WOB) and four black], one black PE mulch, one brown creped, paper mulch, and bare ground control treatments. We also measured the durability and effectiveness of weed suppression of the different mulches over the growing season compared with a hand-weeded bare ground control. Most mulches were degraded, with 40% to 60% of the soil exposed by the end of the season, with the exception of the paper mulch, which was completely degraded at the end of both seasons. Yields were similar among treatments in 2017, with the exception of Naturecycle, which had the lowest yield. Weed pressure was severe, especially in 2018, largely due to early penetration of all mulches except paper by nutsedge. Due to the early and season-long weed pressure and heat stress in black mulches, there were fewer healthy plants in all black-colored mulch treatments in 2018, leading to reduced yields in these treatments. Paper mulch was the only treatment that prevented nutsedge growth; therefore, this treatment and the hand-weeded bare ground treatment had the greatest yields in 2018. WOB also had yields comparable with paper and bare ground plots in 2018, likely due to the cooling effect of the white mulch. The results suggest that in hot climates and in fields infested with nutsedge, paper mulches perform best for midseason pepper cultivation due to the cooling effects and superior weed control.

Full access

Shuresh Ghimire, Arnold M. Saxton, Annette L. Wszelaki, Jenny C. Moore and Carol A. Miles

Biodegradable mulches (BDMs) provide a unique advantage to growers in that they can be tilled into the soil after use, eliminating disposal costs that include time, labor, and equipment needs. Biodegradation of BDMs in the soil can be assessed by the presence of visible mulch fragments; although this is not a direct measure of biodegradation, it provides an initial estimation of mulch biodegradation. We carried out three field experiments to develop a protocol for quantifying BDM fragments in the soil after soil incorporation of mulch. Expt. 1 was done at Mount Vernon, WA, and Knoxville, TN, using five BDMs in four replications, including a polyethylene (PE) mulch reference treatment (three replications and at Mount Vernon only), and a ʽCinnamon Girl’ pumpkin (Cucurbita pepo) test crop. At the end of the growing season, mulches were tilled into the soil to a depth of 6 inches and within 16 days, five soil samples were collected with a golf hole cutter (4 inches diameter and 6 inches deep). Fifty-nine percent of the PE mulch fragments were recovered from the reference treatment. Among the remaining treatments, there was a high plot-to-plot variation as to the percent of the BDM recovered (3% to 95% at Mount Vernon, 2% to 88% at Knoxville). To exclude the possibility of mulch degradation impacting mulch recovery, in Expts. 2 and 3 (at Mount Vernon only), one BDM was laid, then tilled into the soil and sampled using the same sampling core as in Expt. 1, but all in 1 day. In Expt. 2, 15 soil samples were collected per plot, which recovered 70% of the mulch, and in Expt. 3, the entire plot was sampled by collecting 128 soil samples per plot, which recovered 62% of the mulch. In summary, sampling with a relatively large core recovered less than 70% of tilled-in mulch, there was high variability between plots within each treatment because of uneven distribution of the mulch fragments in the plot, and even 50 samples per plot did not provide an accurate estimate of the amount of mulch remaining in the field. Thus, soil sampling with a large core was ineffective, and new sampling methods are needed to assess the amount of BDM remaining in the field after soil incorporation.

Restricted access

Shuresh Ghimire, Annette L. Wszelaki, Jenny C. Moore, Debra Ann Inglis and Carol Miles

The use of plastic biodegradable mulch (BDM) in many vegetable crops such as tomato (Solanum lycopersicum L.), broccoli (Brassica oleracea L. var. italica), and pepper (Capsicum annuum L.) has been proven to be of equal benefit as polyethylene (PE) mulch. However, there are limited research findings on the performance of BDM with a large fruited crop such as pumpkin (Cucurbita pepo L.) where the fruit can rest directly on the mulch for an extended period. To investigate whether heavy fruit might cause the mulch to degrade more quickly than expected, thereby, influencing weed control, fruit yield, and fruit quality including mulch adhesion on fruit, we carried out a field experiment in 2015 and 2016 at two locations in the United States with distinctive climates, Mount Vernon, WA and Knoxville, TN. Three plastic mulches marketed as biodegradable (BioAgri, Organix, and Naturecycle), one fully biodegradable paper mulch (WeedGuardPlus), and one experimental plastic BDM consisting of polylactic acid and polyhydroxyalkanoates (Exp. PLA/PHA) were evaluated against PE mulch and bare ground where ‘Cinnamon Girl’ pie pumpkin was the test crop. There was significant weed pressure in the bare ground plots at both locations over both years, indicating viable weed seed banks at the field sites. Even so, weed pressure was minimal across mulch treatments at both locations over both years because the mulches remained sufficiently intact during the growing season. The exceptions were Naturecycle in 2015 at both locations because of the splitting of the mulch and consequently higher percent soil exposure (PSE), and the penetration of all the plastic mulches at Knoxville by nutsedge (Cyperus sp. L.); nutsedge did not penetrate WeedGuardPlus. At Mount Vernon, overall pumpkin yield across both years averaged 18.1 t·ha−1, and pumpkin yield was the greatest with PE, Exp. PLA/PHA, BioAgri, and Naturecycle (19.9–22.8 t·ha−1), intermediate with Organix and WeedGuardPlus (15.3–18.4 t·ha−1), and the lowest for bare ground (8.7 t·ha−1). At Knoxville, overall pumpkin yield across both years averaged 17.7 t·ha−1, and pumpkin yield did not differ because of treatment (15.3–20.4 t·ha−1). The differences in yield between treatments at Mount Vernon were likely because of differences in the soil temperature. At 10 cm depth, the average soil temperature was 1 °C lower for bare ground and WeedGuardPlus as compared with PE mulch and plastic BDMs (20.8 °C). In contrast, soil temperatures were generally higher (25.2 to 28.3 °C) for all treatments at Knoxville and more favorable to crop yield compared with Mount Vernon. Forty-two percent to 59% of pumpkin fruit had mulch adhesion at harvest at Mount Vernon, whereas only 3% to 12% of fruit had mulch adhesion at Knoxville. This difference was because of the location of fruit set—at Mount Vernon, most of the fruit set was on the mulch whereas at Knoxville, vine growth was more extensive and fruit set was mostly in row alleys. Fruit quality differences among treatments were minimal during storage across both locations and years except for total soluble solids (TSS) in 2016, which was lower for bare ground and WeedGuardPlus compared with all the plastic mulches. Taken overall, these results indicate that pie pumpkin grown with BDM has fruit yield and quality comparable to PE mulch; however, adhesion of some BDMs on fruit could affect marketable yield. Furthermore, paper mulch appears to prevent nutsedge penetration.