Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Jennifer Vaiciunas x
Clear All Modify Search

The perennial stem canker disease eastern filbert blight (EFB), caused by Anisogramma anomala, is devastating to most trees of European hazelnut (Corylus avellana), as genetic resistance is rare in the species. The pathogen is harbored by the wild American hazelnut (Corylus americana) found throughout much of eastern North America. Wild American hazelnut is generally resistant or tolerant to EFB, and is fully cross compatible with C. avellana, the species grown commercially for its nuts, making it a valuable resource for disease resistance breeding. The objective of this study was to identify quantitative trait loci (QTLs) associated with EFB resistance and tolerance in these two species. Three unrelated EFB-resistant C. americana selections [Oregon State University (OSU) 533.069 from Pennsylvania, OSU 403.040 from Nebraska, and OSU 557.122 from Wisconsin] were crossed with C. avellana ‘Tonda di Giffoni’ (TdG), a cultivar from Italy known to be tolerant of EFB. Their progenies, each containing 124 trees, were exposed to A. anomala through field inoculations and natural spread over 7 years, then each tree was evaluated for cumulative disease response. Results showed that disease response of all three populations exhibited a roughly normal distribution, indicating that resistance/tolerance was under multigenic control. An average of 2869 total markers were used to construct each population’s linkage map following genotyping, which included an average of 121 published simple sequence repeat markers to anchor linkage groups (LGs) to those of previous studies. Linkage maps were constructed for each parent of each population and used to map QTLs associated with EFB response. The subsequent analysis resolved five EFB-related QTLs across the three populations, highlighting three genic regions. Unexpectedly, only one QTL was identified from one of the three resistant C. americana parents, located on LG11 of the map of OSU 403.040, whereas three QTLs were found in a similar region on LG10 across the three maps of TdG, and a fifth QTL was found on LG6 of one TdG map. The lack of strong QTLs identified from the three EFB-resistant C. americana parents suggests that their resistance may be highly quantitative and not resolved within the constraints of this study. In contrast, tolerance from TdG appears to be conferred by a limited number of genes with relatively strong effects. Based on prior mapping work in European and American hazelnut where R genes have been located on LG2, LG6, and LG7, the QTLs associated with resistance/tolerance on LG10 and LG11 represent novel resistance regions. These QTLs present new targets for marker aided breeding, especially when pyramiding EFB resistance genes is a goal.

Open Access

The development of new cultivars resistant to the disease eastern filbert blight (EFB), caused by Anisogramma anomala, is of primary importance to hazelnut (Corylus sp.) breeders in North America. Recently, a large number of EFB-resistant cultivars, grower selections, and seedlings from foreign germplasm collections were identified. However, for a significant number of these, little is known of their origin, relationships, or genetic background. In this study, 17 microsatellite markers were used to investigate the genetic diversity and population structure of 323 unique accessions, including EFB-resistant and tolerant germplasm of uncertain origins, in comparison with a panel of known reference accessions representing a wide diversity of Corylus cultivars, breeding selections, and interspecific hybrids. The resulting allelic data were used to construct an unweighted pair group method using arithmetic averages (UPGMA) dendrogram and STRUCTURE diagram to elucidate relationships among the accessions. Results showed 11 consensus groups with EFB-resistant or tolerant accessions in all, providing strong evidence that EFB resistance is relatively widespread across the genus Corylus. Furthermore, open-pollinated seedlings tended to group together with reference accessions of similar geographic origins, providing insight into their genetic backgrounds. The results of this study add to the growing body of knowledge of hazelnut genetic resources and highlight recently introduced EFB-resistant seedling germplasm as new, unrelated genetic pools of resistance.

Free access

Fruit rot is the primary threat to cranberry (Vaccinium macrocarpon) production in the northeastern United States, and increasingly in other growing regions. Efficacy of chemical control is variable because the disease is caused by a complex of pathogenic fungi. In addition, cranberries are often grown in environmentally sensitive areas, placing restrictions on chemical control measures. Thus, a major focus of the cranberry breeding program is to develop cultivars with improved fruit rot resistance (FRR). Several genetically diverse sources of FRR have been identified in our germplasm collection. However, the most resistant accessions lack one or more attributes; e.g., productivity, required for commercial acceptance. These resistant accessions were used in crosses with elite high-yielding selections and in 2009, 1624 progeny from 50 crosses were planted in 2.3-m2 field plots. During 2011–13, under field conditions with very limited fungicide management, disease pressure was severe, allowing evaluation for FRR. Plots were rated on a 1–5 scale for incidence of fruit rot (where 1 = 0% to 20% rot and 5 = 81% to 100% rotted fruit), and rotted fruit counts were made from selected plots to validate the ratings. There was a good correlation in the ratings between years (2011 vs. 2012: r = 0.59, P < 0.0001; 2011 vs. 2013: r = 0.50, P < 0.0001; 2012 vs. 2013: r = 0.62, P < 0.0001), and between rot ratings and percent rotted fruit (r = 0.90, P < 0.0001). Significant differences were found between and within families for FRR. High heritability estimates (h 2 = 0.81) were obtained with midparent-offspring regression of mean fruit rot ratings, indicating additive genetic variance for FRR. Introgression of FRR into higher yielding genetic backgrounds was also accomplished, as some progeny exhibiting high FRR also had commercially viable yield (>300 g/0.09 m2), as well as good berry size and color. Selections are being further evaluated for potential cultivar release.

Free access

European hazelnut (Corylus avellana L.) is an economically important edible nut producing species, which ranked sixth in world tree nut production in 2016. European hazelnut production in the United States is primarily limited to the Willamette Valley of Oregon, and currently nonexistent in the eastern United States because of the presence of a devastating endemic disease, eastern filbert blight (EFB) caused by Anisogramma anomala (Peck) E. Muller. The primary commercial means of control of EFB to date is through the development and planting of genetically resistant european hazelnut cultivars, with an R-gene introduced from the obsolete, late-shedding pollinizer ‘Gasaway’. Although the ‘Gasaway’ resistance source provides protection against EFB in the Pacific northwestern United States (PNW), recent reports have shown that it is not effective in parts of the eastern United States. This may be in part because the identification and selection of ‘Gasaway’ and ‘Gasaway’-derived cultivars occurred in an environment (PNW) with limited genetic diversity of A. anomala. The objectives of the current research were to develop a genetic linkage map using double digestion restriction site associated DNA sequencing (ddRADseq) and identify quantitative trait loci (QTL) markers associated with EFB resistance from the resistant selection Rutgers H3R07P25 from southern Russia. A mapping population composed of 119 seedling trees was evaluated in a geographic location (New Jersey) where the EFB fungus is endemic, exhibits high disease pressure, and has a high level of genetic diversity. The completed genetic linkage map included a total of 2217 markers and spanned a total genetic distance of 1383.4 cM, with an average marker spacing of 0.65 cM. A single QTL region associated with EFB resistance from H3R07P25 was located on european hazelnut linkage group (LG) 2 and was responsible for 72.8% of the phenotypic variation observed in the study. Based on its LG placement, origin, and disease response in the field, this resistance source is different from the ‘Gasaway’ source located on LG6. The current results, in combination with results from previous research, indicate that the H3R07P25 source is likely exhibiting resistance to a broader range of naturally occurring A. anomala isolates. As such, H3R07P25 will be important for the development of new european hazelnut germplasm that combines EFB resistance from multiple sources in a gene pyramiding approach. Identification of EFB resistance in high disease pressure environments representing a diversity of A. anomala populations is likely a requirement for identifying plants expressing durable EFB resistance, which is a precursor to the development of a commercially viable european hazelnut industry in the eastern United States.

Free access