Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Jennifer Johnson-Cicalese x
Laboratory studies were conducted to determine the effects of Acremonium endophytes on four species of billbug (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus (Say), S. inaequalis Say, and S. minimus Hart) found damaging cool-season turfgrasses in New Jersey. Billbug adults feeding on potted tall fescue (Festuca arundinacea Schreb.) plants infected with Acremonium coenophialum Morgan-Jones and Gams showed significantly greater mortality than billbugs feeding on endophyte-free tall fescue. Little difference was observed in amount of feeding. In petri dish preference tests, billbug adults were given a choice and, again, no significant difference was observed in the amount of feeding on endophyte-free versus endophyte-infected tall fescue tillers. In a third experiment, billbug adults were placed in petri dishes with either tall fescue with or without A. coenophialum or perennial ryegrass (Lolium perenne L.) with or without Acremonium lolii Latch, Christensen, and Samuels. Only small differences were seen in number of eggs laid and amount of feeding. Mortality of all four billbug species, however, was greater on both grasses when endophyte-infected.
Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.
The flavonoid and organic acid profiles of one cultivated tetraploid and six wild diploid blueberry species (Vaccinium spp.) were systematically investigated using high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (HPLC-ESI-MS-MS). Eighteen individual anthocyanins from five aglycone classes were characterized among species, with malvidin and delphinidin glycosides accounting for 31.4% and 29.1% of total anthocyanins. Twenty-three flavonol glycosides from six aglycone classes were identified, among which quercetin and myricetin glycosides accounted for more than 80% of total flavonols in most species. Both inter- and intraspecies differences in anthocyanin and flavonol composition were observed, as described by principal component analysis. Only B-type proanthocyanidins were found in blueberry species, and highly polymerized molecules with degree of polymerization greater than 10 appeared to be the most abundant fraction. Although overall proanthocyanidin levels varied from 27.7 to 146.3 mg/100 g fruit, all species exhibited similar proanthocyanidin composition. Citric, quinic, and shikimic acid were the major identified blueberry organic acids. However, their relative abundance varied across species. In certain species either citric acid (e.g., Vaccinium darrowii) or quinic acid (e.g., Vaccinium corymbosum) was lacking.
Fruit rot is the primary threat to cranberry (Vaccinium macrocarpon) production in the northeastern United States, and increasingly in other growing regions. Efficacy of chemical control is variable because the disease is caused by a complex of pathogenic fungi. In addition, cranberries are often grown in environmentally sensitive areas, placing restrictions on chemical control measures. Thus, a major focus of the cranberry breeding program is to develop cultivars with improved fruit rot resistance (FRR). Several genetically diverse sources of FRR have been identified in our germplasm collection. However, the most resistant accessions lack one or more attributes; e.g., productivity, required for commercial acceptance. These resistant accessions were used in crosses with elite high-yielding selections and in 2009, 1624 progeny from 50 crosses were planted in 2.3-m2 field plots. During 2011–13, under field conditions with very limited fungicide management, disease pressure was severe, allowing evaluation for FRR. Plots were rated on a 1–5 scale for incidence of fruit rot (where 1 = 0% to 20% rot and 5 = 81% to 100% rotted fruit), and rotted fruit counts were made from selected plots to validate the ratings. There was a good correlation in the ratings between years (2011 vs. 2012: r = 0.59, P < 0.0001; 2011 vs. 2013: r = 0.50, P < 0.0001; 2012 vs. 2013: r = 0.62, P < 0.0001), and between rot ratings and percent rotted fruit (r = 0.90, P < 0.0001). Significant differences were found between and within families for FRR. High heritability estimates (h 2 = 0.81) were obtained with midparent-offspring regression of mean fruit rot ratings, indicating additive genetic variance for FRR. Introgression of FRR into higher yielding genetic backgrounds was also accomplished, as some progeny exhibiting high FRR also had commercially viable yield (>300 g/0.09 m2), as well as good berry size and color. Selections are being further evaluated for potential cultivar release.