Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jennifer Brodbelt x
  • All content x
Clear All Modify Search
Free access

Basavaraj Girennavar*, Narayan Bhat, Jennifer Brodbelt, Michael Pikulski, G.K. Jayaprakasha, and Bhimanagouda S. Patil

Grapefruit juice contain furanocoumarin derivatives which are known to interact with various drugs such as felodipine, leading to the increased bioavailability. Due to very low concentrations of furocoumarin in grapefruit juice, isolation of these compounds has been a challenge to researchers. Five grapefruit (Citrus paradisi Macf.) varieties such as `Marsh White', `Duncan', `Rio Red', `Orange Flesh', and `Mexican Red' were harvested and analyzed. Samples were extracted successively three times with ethyl acetate until all furocoumarins were extracted. The dried extract was reconstituted in methanol and used for quantification using high-performance liquid chromatography. Furanocoumarins were quantified by gradient elution with methanol and water as mobile phase with a flow rate of 1.1 mL/min at 240 nm. The concentrations of bergamottin, dihydroxybergamotin (DHB) and dimer of DHB were shown to distinctly differ among varieties. Red colored grapefruit showed lower concentrations of the furocoumarins compared to white colored grapefruit. Among the five varieties, `Rio Red' grapefruit contain lower concentrations of bergamottin and DHB. Further studies are continued to quantify other dimers and commercial varieties. Knowledge of furocoumarin levels in grapefruit may eventually help the consumer to make decision about eating grapefruit and/or drinking juice while taking certain medications.

Free access

Shibu M. Poulose*, Jennifer S. Brodbelt, Leonard M. Pike, and Bhimanagouda S. Patil

Limonoids, chemically related triterpinoids predominantly found in citrus and neem relatives, are known to play a pivotal role in the prevention of different types of cancer and cardiovascular diseases. Since the concentrations of these compounds are low in the plant tissues, the isolation of pure compounds is the limiting factor for the individual activity studies in animal models. In this study, combinations of chromatographic techniques were used to isolate limonoid aglycones and limonoid glucosides from citrus byproducts such as seeds and molasses. The compounds were initially extracted with different polar solvents and the concentrated extracts were passed through a series of adsorbent resin (SP-70) and ion-exchange resins (WA-30, Dowex-50, Q-sepharose) to remove further impurities. The use of increasing ionic strength of NaCl from 0 to 800 mm to release the exchanged compounds from the ion exchange columns further separated the limonoids from flavonoids, which was confirmed through TLC, UV, and analytical HPLC methods. Individual compounds were further purified using flash chromatography and preparative HPLC methods and identified by using LC-MS analysis. Direct crystallization of limonin resulted in a 17% increase in the yield as compared to the previously reported methods. The results suggest that application of these purification methods are useful for the bulk purification of compounds in order to further investigate their biological activity.