Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jennifer A. Kimball x
Clear All Modify Search

St. augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] is a popular turfgrass in the southern United States as a result of its superior shade tolerance and relatively low input requirements. However, it is the least cold-tolerant of commonly used warm-season turfgrass species. ‘Raleigh’, released in 1980, has superior cold tolerance and is adapted and widely used in U.S. Department of Agriculture hardiness zones 8 to 9. More than 25 years after its release, ‘Raleigh’ is still the industry’s standard in terms of cold tolerance. However, the original foundation and breeder stock fields of the cultivar have been lost, placing the integrity of the cultivar at risk. The objectives of this study were to investigate whether current ‘Raleigh’ production fields across the southern United States are true to the original source. In this study, 15 amplified fragment length polymorphism (AFLP) primer combinations were used to assess levels of genetic variability among three original stocks of ‘Raleigh’ and 46 samples obtained from sod farms and universities in six states. Genetic similarities among the original stocks were Sij = 1, whereas similarities between this group and all other samples ranged from 0.24 to 1.0. Results based on cluster analysis, principal coordinate analysis, and analysis of molecular variance (AMOVA) revealed separation between original stocks of ‘Raleigh’ and some commercial samples. Results from this study offer further evidence that molecular markers provide a useful and powerful technique for identity preservation of clonally propagated cultivars and the detection of genetic variants in sod production fields and turfgrass breeding programs.

Free access

New elite st. augustinegrass cultivars with improved cold tolerance and desirable turf quality are needed for the turf industry, especially in the transitional climatic region of the United States. To efficiently use sources of cold tolerance in a breeding program, an understanding of the genetic control of this trait and its relationship to important turf quality traits is required. Therefore, the objective of this study was to estimate general and specific combining abilities for cold response and turf quality traits. Six diploid genotypes of st. augustinegrass were selected as parents for a diallel mating design without reciprocals and evaluated over 3 years at two locations. The true hybridity of crosses was confirmed using simple sequence repeats (SSR). Combining ability analysis revealed that both general and specific combining abilities were significant across years and locations. Specific combining ability (SCA) was the largest source of genetic variation for winter survival, genetic color, turf density, and end-of-season cover indicating that nonadditive gene effects play a key role in the inheritance of these traits. The parental genotype ‘GF2’ was identified as a promising parent for future breeding efforts as it provided positive general combining ability (GCA) effects for both cold tolerance and turf quality traits, which were not significantly correlated with one another. Lines identified as parental selfs generally showed lower cold response and inferior turf quality than the original parental lines indicating that inbreeding depression can occur in st. augustinegrass. This study provides information regarding the combining ability of cold response and turf quality traits in st. augustinegrass, which will ultimately aid in parental selection for our future breeding efforts.

Free access