Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Jeffrey L. Smith x
Clear All Modify Search
Full access

Ramón A. Arancibia, Cody D. Smith, Don R. LaBonte, Jeffrey L. Main, Tara P. Smith and Arthur Q. Villordon

Consumption of sweetpotato (Ipomoea batatas) has increased in the past decade in part because of its nutritional and health attributes, and because of the availability and convenience of processed products. The sweetpotato processing industry is expanding and supplying more sweetpotato products than ever before. Unlike the medium-sized roots (U.S. no.1) preferred for fresh market, large (jumbo) roots is accepted and in certain cases desired by the processing industry, and overall yield is preferred over strict sizing requirements and aesthetic appeal. Therefore, this study investigated the yield increase and grade proportions in response to plant spacing and extension of the growing period to improve profitability of the production system. Experiments with ‘Beauregard’ and ‘Evangeline’ sweetpotato were conducted in Mississippi and Louisiana during 2010 and 2011. Treatments consisted of a combination of early and late planting date and delay in harvest, in-row plant spacing, and row width. Yield increase was inconsistent with delaying harvest and appears to depend on environmental conditions at harvest late in the season. Marketable yield was consistently greater in early plantings than late plantings. Yield of U.S. no.1 grade was unaffected by delaying harvest regardless of planting date. Delaying harvest in early plantings contributed to increase jumbo-sized roots and marketable yield. The economic assessment of delaying harvest in early plantings indicated a gain in net benefit either when hand harvested for fresh market or field run bulk harvested for processing. Row width and in-row plant spacing had only a marginal effect on yield of canner grade (small-sized roots). The economic assessment of changing plant density indicated no gain in net benefit, which indicates that choice of plant density can depend on other factors.

Free access

Dan TerAvest, Jeffrey L. Smith, Lynne Carpenter-Boggs, Lori Hoagland, David Granatstein and John P. Reganold

Synchronizing the supply of plant-available nitrogen (N) from organic materials with the N needs of apple trees is essential to cost-effective organic apple production. Tree growth and organic matter mineralization are affected by orchard floor management. This study examines the effects of three orchard floor management systems, cultivation, wood chip mulch, and a legume cover crop, on the accumulation and partitioning of compost-derived N in young apple (Malus domestica Borkh.) trees at different compost application dates across two growing seasons. Compost enriched with 15N was applied to apple trees in April, May, and June of 2006 and 2007, and trees were excavated in Sept. 2007 to determine the fate of labeled compost N. Trees with wood chip mulch had significantly greater dry weight and N accumulation in vegetative tree components than trees with cultivation or legume cover. Fruit yields were similar between cultivation and wood chip treatments despite less vegetative growth under cultivation, as these trees partitioned more dry weight into fruit (44%) than wood chip mulch trees (31%). Nitrogen-use efficiency by trees was lower with a living legume cover crop than in other treatments due to competition for resources. In the cover crop aboveground biomass, 20% to 100% of the N was derived from compost. In comparison, only 5% to 40% of N in the decomposing wood chip mulch originated from compost. Tree reserves were an important source of N for spring fruit and leaf growth in all treatments, but significantly more so for trees in the cultivation treatment. Fruit and leaves were strong sinks for compost N early in the season, with trees allocating 72% of spring N uptake into leaves and fruit. In the summer, N uptake increased improving compost N-use efficiency. Summer N was preferentially allocated to perennial tissues (71%), bolstering N reserves. Trees with wood chip mulch performed well and had greater capacity to build N reserves, making wood chips ideal for establishing young organic apple orchards. However, as the orchard matures, it may be beneficial to switch to a groundcover that reduces tree vegetative growth.

Free access

Dan TerAvest, Jeffrey L. Smith, Lynne Carpenter-Boggs, David Granatstein, Lori Hoagland and John P. Reganold

This study evaluated the effects of in-row groundcovers (bare ground, brassica seed meal, cultivation, wood chip mulch, legume cover crop, and non-legume cover crop) and three compost rates (48, 101, and 152 kg available nitrogen (N)/ha/year) on soil carbon (C) pools, biological activity, N supply, fruit yield, and tree growth in a newly planted apple (Malus domestica Borkh.) orchard. We used nonlinear regression analysis of C mineralization curves to differentiate C into active and slow soil C pools. Bare ground and cultivation had large active soil C pools, 1.07 and 0.89 g C/kg soil, respectively, but showed little stabilization of C into the slow soil C pool. The use of brassica seed meal resulted in increased soil N supply, the slow soil C pool, and earthworm activity but not total soil C and N, fruit yield, or tree growth. Legume and non-legume cover crops had increased microbial biomass and the slow soil C pool but had lower fruit yield and tree growth than all other groundcovers regardless of compost rate. Soils under wood chip mulch had elevated earthworm activity, total soil C and N, and the slow soil C pool. Wood chip mulch also had the greatest cumulative C mineralization and a high C:N ratio, which resulted in slight N immobilization. Nevertheless, trees in the two wood chip treatments ranked in the top four of the 13 treatments in both fruit yield and tree growth. Wood chip mulch offered the best balance of tree performance and soil quality of all treatments.

Free access

Suparna R. Mundodi, Jeffrey A. Anderson, Niels O. Maness, Michael W. Smith, Bjorn Martin, Marlee L. Pierce and Andrew J. Mort

The hypersensitive response in resistant plants exposed to incompatible pathogens involves structural changes in the plant cell wall and plasma membrane. Cell wall changes may include pectin deesterification resulting in release of methanol. The time course of methanol production was characterized from `Early Calwonder 20R' pepper (Capsicum annuum L.) leaves infiltrated with the incompatible pathogen, Xanthomonas campestris pv. vesicatoria (Doidge) Dye race 1 (XCV). In the first time course experiment, leaves were infiltrated with either 108 colony-forming units/mL of XCV or water control. Leaf panels (1 × 5 cm) were excised after dissipation of water soaking, then incubated in vials at 24 °C. Headspace gas was analyzed at 6-hour intervals up to 24 hours. The rate of methanol production from resistant pepper leaves infiltrated with XCV was greatest during the first 12 hours after excision. In another experiment, leaf panels were harvested at 6-hour intervals up to 24 hours after inoculation and incubated for 12 hours at 24 °C to determine the relationship between the interval from inoculation to leaf excision and methanol production. The highest rate of methanol production was obtained when the interval between bacterial infiltration and leaf excision was 18 hours. The relationship between methanol release and changes in the degree of methylesterification (DOM) of cell wall pectin was determined in near isogenic lines of `Early Calwonder' pepper plants resistant (20R) and susceptible (10R) to XCV race 1. Cell walls were prepared from resistant and susceptible pepper leaves infiltrated with XCV or water. XCV-treated resistant leaves had 18% DOM and 9.7 nmol·g-1·h-1 of headspace methanol, and the susceptible leaves had 48% DOM with 0.2 nmol·g-1·h-1 methanol. Susceptible and resistant control leaves infiltrated with water had 55% and 54% DOM, respectively, with no detectable methanol production. Increased methanol production in resistant pepper leaves inoculated with XCV coincided with an increase in cell wall pH. Intercellular washing fluid of resistant pepper leaves had a significantly higher pH (6.9) compared to susceptible leaves (pH 5.1) and control leaves infiltrated with water (pH 5.1). Both 10R and 20R pepper leaves infiltrated with buffer at increasing pH's of 5.1, 6.9 or 8.7 had increased methanol production. Since deesterified pectin is more susceptible to degradation, demethylation may facilitate formation of pectic oligomers with defensive signalling activity.