Search Results

You are looking at 1 - 10 of 39 items for

  • Author or Editor: Jeffrey K. Brecht x
Clear All Modify Search
Free access

Jeffrey K. Brecht and Kimberly M. Cordasco

Abscission of cluster tomatoes commonly limits product marketability in the retail environment. Ripening and exogenous ethylene exposure are assumed to play important roles in cluster tomato fruit abscission. `Clarance' and `DRW7229' fruit harvested at either mature green or partially ripened stages did not abscise during storage for 2 weeks at 20 °C and 95% to 100% relative humidity (RH), although respiration and ethylene production indicated that all fruit reached the postclimacteric stage. Exogenous ethylene (1 or 10 ppm) exposure for 8 days at 20 °C and 95% to 100% RH also did not induce fruit abscission for either cultivar, although pedicel and sepal yellowing were observed. Fruit from clusters stored at 20 °C and 20% or 50% RH abscised if sepal shrivel became noticeable before the fruit reached the full red ripeness stage, while no abscission occurred in fruit that reached the full red stage prior to the appearance of sepal shrivel; no fruit stored in 95% to 100% RH abscised. Fruit that ripened prior to the appearance of sepal shrivel were “plugged” (i.e., tissue underlying the stem scar was pulled out) if manual fruit detachment from the pedicel was attempted. These results indicate that there is an interaction of water loss and fruit ripening in promoting abscission zone development in cluster tomatoes.

Free access

Steven A. Sargent and Jeffrey K. Brecht

Carambolas (Averrhoa carambola L., cv. Arkin) ware harvested at colorbreak (CB) and light green (LG) ripeness stages, commercially packed and cooled. The next day the fruit were treated as: Control (ungassed): CB, LG; Ethylene pretreatment (ETH) @100ppm: LC for 1, 2 or 3 days at 20°C or 25°. After pretreatment the fruit were stored at 5°. After 1, 2, 3, 4 weeks, 10 fruit from each treatment ware removed from storage and placed at 20°. Fruit color and decay were rated daily until 80% of the fruit in each treatment reached the yellow ripeness stage, at which time external color, total soluble solids (TSS), pH and total titratable acidity (TTA) were determined. Carambolas harvested at the LG stage can be ripened to good quality with ETH pretreatment. For two weeks storage at 5°, 2 days ETH are necessary at 20° or 25° to initiate ripening. For three weeks storage, 3 days ETH are required at 20°, and 2 or 3 days ETH are required at 25°. Fruit stored four weeks were of fair quality. LG with slower ripening initiation developed chilling injury during storage; the fastest initiation had the best color but the shortest marketing life. Fruit harvested CB had slightly higher TSS than ETH-treated LG but pH and TTA were similar.

Free access

Pavlos Tsouvaltzis, Angelos Deltsidis and Jeffrey K. Brecht

Enzymatic browning is a serious quality limitation for fresh-cut potato (Solanum tuberosum L.) that has been successfully controlled by heat treatment in other commodities. The use of brief heat treatments with 55 °C water (HW) applied to ‘Russet Burbank’ tubers for 10, 20, 30, or 40 min before cutting was evaluated for potential implementation to control tissue browning. After heat treatment, tubers were held at 20 °C for 0 or 1 day before peeling and slicing. Control tubers were not previously immersed in hot water. All slices were placed in perforated plastic bags and stored at 5 °C for 6 days. Exposure to HW for 30 or 40 min caused severe heat injury. Browning developed in all treatments as indicated by color measurements and discoloration scores (index of extent of discolored area on the slice surface) during storage. Hot water treatment for 10 min best reduced browning, but only when treated tubers were stored intact for 1 day at 20 °C before cutting, as indicated by discoloration scores and changes in L*, a*, and Ho values, which were significantly different from either the control or the other HW treatments. Generally, the severe browning that developed in control slices during storage was associated with significant increases of 25% and 71% in phenolic content and antioxidant capacity, respectively. On the other hand, phenolic synthesis increased by only 6.25% to 13.2% in HW-treated slices during storage and polyphenoloxidase (PPO) activity was 24% to 31% lower compared with the activity before storage. Immersing potato tubers in 55 °C water for 10 to 20 min followed by storage at 20 °C for 1 day before processing reduced but did not prevent browning of peeled slices in terms of color changes and discoloration score. There was no significant correlation between browning and phenolic content or PPO activity.

Full access

Desire Djidonou, Xin Zhao, Jeffrey K. Brecht and Kim M. Cordasco

Grafting is considered to be a unique component in sustainable vegetable production. In addition to its usefulness for managing soil-borne diseases, it has been suggested that grafting with vigorous rootstocks can improve crop growth and yield. The objective of this greenhouse study was to assess the effects of different interspecific hybrid tomato rootstocks (Solanum lycopersicum × Solanum habrochaites) on yield, growth, nutrient accumulation, and fruit composition of tomato (S. lycopersicum). Using the determinate tomato cultivar Florida 47 as the scion, plants were grafted onto four interspecific rootstock cultivars including Beaufort, Maxifort, Multifort, and RST-04-105. Overall, the use of rootstocks resulted in total and marketable fruit increase 53% and 66% higher than non-grafted and self-grafted scion plants, respectively. The increase in marketable yield by ‘Beaufort’, ‘Maxifort’, and ‘Multifort’ was largely attributed to an increased number of fruit per plant, whereas higher average fruit weight contributed to the yield increase in plants grafted onto ‘RST-04-105’. Self-grafting of ‘Florida 47’ resulted in similar yield as the non-grafted scion control. Analyses of plant growth parameters demonstrated significant enhancement of total leaf area at first fruit harvest in plants grafted onto interspecific rootstocks as compared with the non-grafted and self-grafted scion controls. In addition to plant growth and yield improvement, enhanced accumulation of nitrogen, potassium, and calcium was also observed in grafted plants. The enhancement in mineral nutrient accumulation was largely related to increased biomass accumulation rather than higher nutrient concentration (on a dry weight basis). The overall accumulation of phosphorus was not influenced markedly by the rootstocks used. In general, grafting with the interspecific rootstocks maintained fruit soluble solids content (SSC) and total titratable acidity (TTA), concentrations of vitamin C, carotenoids, and total phenolics at levels comparable with non-grafted plants, whereas harvest date showed a more pronounced effect on fruit composition.

Full access

George J. Hochmuth, Jeffrey K. Brecht and Mark J. Bassett

Potassium (K) is required for successful carrot (Daucus carota) production on sandy soils of the southeastern United States, yet there is little published research documenting most current university Cooperative Extension Service recommendations. Soil test methods for K in carrot production have not been rigorously validated. Excessive fertilization sometimes is practiced by carrot growers to compensate for potential losses of K from leaching and because some growers believe that high rates of fertilization may improve vegetable quality. Carrots were grown in three plantings during the winter of 1994-95 in Gainesville, Fla., to test the effects of K fertilization on carrot yield and quality on a sandy soil testing medium (38 ppm) in Mehlich-1 soil-test K. Large-size carrot yield was increased linearly with K fertilization. Yields of U.S. No. 1 grade carrots and total marketable carrots were not affected by K fertilization. K fertilizer was not required on this soil even though the University of Florida Cooperative Extension Service recommendation was for 84 lb/acre K. Neither soluble sugar nor carotenoid concentrations in carrot roots were affected by K fertilization. The current K recommendation for carrots grown on sandy soils testing 38 ppm Mehlich-1 K could be reduced and still maintain maximum carrot yield and root quality.

Free access

George J. Hochmuth, Jeffrey K. Brecht and Mark J. Bassett

Nitrogen is required for successful carrot production on sandy soils of the southeastern United States, yet carrot growers often apply N in amounts exceeding university recommendations. Excessive fertilization is practiced to compensate for losses of N from leaching and because some growers believe that high rates of fertilization improve vegetable quality. Carrots (Daucus carota L.) were grown in three plantings during Winter 1994–95 in Gainesville, Fla., to test the effects of N fertilization on yield and quality. Yield increased with N fertilization but the effect of N rate depended on planting date; 150 kg·ha–1 N maximized yield for November and December plantings but 180 kg·ha–1 N was sufficient for the January planting. Concentration of total alcohol-soluble sugar was maximized at 45 mg·g–1 fresh root with 140 kg·ha–1 N for `Choctaw' carrots, whereas sugar concentration of `Scarlet Nantes' roots was not affected by N fertilization. Carrot root carotenoid concentration was maximized at 55 mg·kg–1 fresh root tissue with 160 kg·ha–1 N. Generally, those N fertilization rates that maximized carrot root yield also maximized carrot quality as determined by sugar and carotenoid concentrations.

Free access

Michael T. Masarirambi, Jeffrey K. Brecht and Steven A. Sargent

Mature green fruit of `Agriset 761', `Colonial', `Sunny' and `Sunbeam' tomatoes were exposed to 100 ppm ethylene at 20, 25, 30, 35, or 40°C around 95% relative humidity (RH) for 24, 48, or 72 hours, then transferred to air at 20°C and 95% RH for ripening. There were few differences in ripening behavior in tomatoes exposed to ethylene at high temperatures (>30°C) for 24 hours compared to those treated at lower temperatures. However, increasing the duration of ethylene treatment at 35 or 40°C to 48 or 72 hours inhibited subsequent red color development, but prior exposure to ethylene at 30°C stimulated red color development. Ethylene production was inhibited after 48 or 72 hours at 40°C, but was stimulated by exposure to lower temperatures in the order shown: 35 > 30 > 25. During ripening, conversion of ACC to ethylene increased in fruit exposed to ethylene at 20 or 25°C but did not change in fruit from 30 or 35°C. ACC oxidase activity was lowest after exposure to 40°C. Untreated fruit ripened slowly and nonuniformly compared to those previously treated with 100 ppm ethylene. Increasing the ethylene treatment concentration to 1000 ppm did not alter the responses to high temperatures described above.

Free access

Steven A. Sargent, Jeffrey K. Brecht and Judith J. Zoellner

Internal bruising (IB) caused by handling impacts results in disruption of normal ripening in tomato (Lycopersicon esculentum Mill.) locular gel. It was selected as an injury indicator to investigate the effect of drop height (O, 10, 20, 30 cm) onto an unpadded surface and number of impacts (one or two) for three tomato cultivars. For mature-green (MG) tomatoes, significant incidence of IB (5% to 45%) was found in all cultivars for single drops on opposite sides of fruits from 20 cm; two drops on the same location from 20 cm caused 20% to 30% IB. Breaker-stage (BR) tomatoes were more sensitive to impacts than MG. Single drops from 10 cm on opposite sides of BR fruits caused 15% to 73% IB, depending on cultivar. Two drops on a single location from 10 cm caused 50% to 68% IB. `Sunny' was less susceptible to IB than `Solar Set' or `Cobia' (formerly NVH-4459).

Free access

Jeffrey K. Brecht, Steven A. Sargent and L. A. Risse

Snap beans were room cooled (RC) or forced-air cooled (FA) in a 4.5°C commercial cold storage room, or hydrocooled (HC) in a commercial flume-type unit with 4°C water containing 175 ppm NaOCl. The beans were packed in wirebound wooden crates (WC) or waxed corrugated fiberboard cartons (FC) before (RC, FA) or after (HC) precooking and stored one week at 10°C before evaluation. Ascorbic acid, chlorophyll and fiber contents did not differ among treatments, while moisture content and per cent unshrivelled beans were lowest in FA and highest in HC, and lower in WC than in FC containers. HC reduced development of mechanical damage symptoms (browning) and decay compared to RC and FA. The former effect was attributable to the presence of NaOCl rather than leaching or increased cooling rate in HC. HC beans packed in FC had the highest per cent sound beans and lowest per cent beans showing mechanical damage symptoms of all the treatment combinations tested.