Search Results

You are looking at 1 - 10 of 49 items for

  • Author or Editor: Jeffrey K. Brecht x
  • All content x
Clear All Modify Search
Open access

Lan-Yen Chang and Jeffrey K. Brecht

Bruising of strawberry (Fragaria ×ananassa Duch.) fruit is a common mechanical injury that reduces product value. Wound-induced ethylene may accelerate deterioration or decay, affecting strawberry quality and shelf life. However, bruising susceptibility varies among strawberry cultivars. In this study, cultivars Monterey, Sweet Sensation, Radiance, and two proprietary cultivars (Cultivar A and Cultivar B) from a private breeding program were investigated to evaluate their bruising susceptibility and wound response. Bruising consisted of dropping a 28-g steel ball from 27 cm onto individual fruit; unbruised fruit were the primary control, while fruit exposed to 1 μL·L−1 ethylene were used as a check for ethylene response. All fruit were stored at 20 °C, 90% relative humidity (RH), with respiration and ethylene production measured at 2-hour intervals for 24 hours. Appearance observations were recorded daily until decay onset. Peak respiration rates of 30–40 mL CO2·kg−1·h−1 mostly occurred within 4 hours (‘Cultivar B’) to 6 hours (‘Cultivar A’ and ‘Sweet Sensation’) after bruising, except ‘Monterey’, which peaked at 60 mL CO2·kg−1·h−1 in 2 hours, and ‘Radiance’, which reached 70 mL CO2·kg−1·h−1 in 6 hours. Maximum ethylene production rates after bruising were 0.05 to 0.06 μL·kg−1·h−1 for ‘Monterey’, ‘Cultivar A’, and ‘Cultivar B’, 0.10 μL·kg−1·h−1 for ‘Sweet Sensation’, and 0.20 to 0.37 μL·kg−1·h−1 for ‘Radiance’. ‘Cultivar B’, with the lowest ethylene production, exhibited the lowest overall bruising severity, whereas ‘Radiance’, with the highest ethylene production, exhibited the most severe bruising-induced water soaking, and the other cultivars were intermediate, although ‘Monterey’ bruises were more discolored than those of the other cultivars. ‘Monterey’, ‘Radiance’, and ‘Sweet Sensation’ showed more yellowing and browning of the calyx in response to both bruising and ethylene exposure than ‘Cultivar A’ and ‘Cultivar B’. Except for ‘Cultivar B’, bruising and ethylene exposure increased decay severity.

Free access

Pavlos Tsouvaltzis, Angelos Deltsidis, and Jeffrey K. Brecht

Enzymatic browning is a serious quality limitation for fresh-cut potato (Solanum tuberosum L.) that has been successfully controlled by heat treatment in other commodities. The use of brief heat treatments with 55 °C water (HW) applied to ‘Russet Burbank’ tubers for 10, 20, 30, or 40 min before cutting was evaluated for potential implementation to control tissue browning. After heat treatment, tubers were held at 20 °C for 0 or 1 day before peeling and slicing. Control tubers were not previously immersed in hot water. All slices were placed in perforated plastic bags and stored at 5 °C for 6 days. Exposure to HW for 30 or 40 min caused severe heat injury. Browning developed in all treatments as indicated by color measurements and discoloration scores (index of extent of discolored area on the slice surface) during storage. Hot water treatment for 10 min best reduced browning, but only when treated tubers were stored intact for 1 day at 20 °C before cutting, as indicated by discoloration scores and changes in L*, a*, and Ho values, which were significantly different from either the control or the other HW treatments. Generally, the severe browning that developed in control slices during storage was associated with significant increases of 25% and 71% in phenolic content and antioxidant capacity, respectively. On the other hand, phenolic synthesis increased by only 6.25% to 13.2% in HW-treated slices during storage and polyphenoloxidase (PPO) activity was 24% to 31% lower compared with the activity before storage. Immersing potato tubers in 55 °C water for 10 to 20 min followed by storage at 20 °C for 1 day before processing reduced but did not prevent browning of peeled slices in terms of color changes and discoloration score. There was no significant correlation between browning and phenolic content or PPO activity.

Free access

Jeffrey K. Brecht and Kimberly M. Cordasco

Abscission of cluster tomatoes commonly limits product marketability in the retail environment. Ripening and exogenous ethylene exposure are assumed to play important roles in cluster tomato fruit abscission. `Clarance' and `DRW7229' fruit harvested at either mature green or partially ripened stages did not abscise during storage for 2 weeks at 20 °C and 95% to 100% relative humidity (RH), although respiration and ethylene production indicated that all fruit reached the postclimacteric stage. Exogenous ethylene (1 or 10 ppm) exposure for 8 days at 20 °C and 95% to 100% RH also did not induce fruit abscission for either cultivar, although pedicel and sepal yellowing were observed. Fruit from clusters stored at 20 °C and 20% or 50% RH abscised if sepal shrivel became noticeable before the fruit reached the full red ripeness stage, while no abscission occurred in fruit that reached the full red stage prior to the appearance of sepal shrivel; no fruit stored in 95% to 100% RH abscised. Fruit that ripened prior to the appearance of sepal shrivel were “plugged” (i.e., tissue underlying the stem scar was pulled out) if manual fruit detachment from the pedicel was attempted. These results indicate that there is an interaction of water loss and fruit ripening in promoting abscission zone development in cluster tomatoes.

Free access

Steven A. Sargent and Jeffrey K. Brecht

Carambolas (Averrhoa carambola L., cv. Arkin) ware harvested at colorbreak (CB) and light green (LG) ripeness stages, commercially packed and cooled. The next day the fruit were treated as: Control (ungassed): CB, LG; Ethylene pretreatment (ETH) @100ppm: LC for 1, 2 or 3 days at 20°C or 25°. After pretreatment the fruit were stored at 5°. After 1, 2, 3, 4 weeks, 10 fruit from each treatment ware removed from storage and placed at 20°. Fruit color and decay were rated daily until 80% of the fruit in each treatment reached the yellow ripeness stage, at which time external color, total soluble solids (TSS), pH and total titratable acidity (TTA) were determined. Carambolas harvested at the LG stage can be ripened to good quality with ETH pretreatment. For two weeks storage at 5°, 2 days ETH are necessary at 20° or 25° to initiate ripening. For three weeks storage, 3 days ETH are required at 20°, and 2 or 3 days ETH are required at 25°. Fruit stored four weeks were of fair quality. LG with slower ripening initiation developed chilling injury during storage; the fastest initiation had the best color but the shortest marketing life. Fruit harvested CB had slightly higher TSS than ETH-treated LG but pH and TTA were similar.

Open access

Ming-Wei S. Kao, Jeffrey K. Brecht, and Jeffrey G. Williamson

The physical and chemical characteristics of two melting flesh (MF) cultivars, TropicBeauty and Flordaprince, and two non-melting flesh (NMF) cultivars, UFSun and Gulfking, with advancing maturities, were determined at harvest, after ripening at 20 °C for 7 days (i.e., direct ripening) and after storage at 0 °C for 14 days then ripening at 20 °C for 7 days (i.e., ripening following low temperature storage). The NMF cultivars were able to retain flesh firmness better than the MF cultivars as fruit matured and ripened on the tree and after the two storage treatments. The NMF fruit of the least mature to the most advanced maturity groups (MGs) were ≈2 to 7 times firmer than the MF fruit in the same MGs after ripening in both storage conditions. For both MF and NMF fruit, a significant reduction of titratable acidity (TA) occurred with no significant changes in soluble solids content (SSC) and total soluble sugar (TSS) as maturity and ripening progressed on the tree and after ripening in both storage conditions. Minimum quality standards of “ready for consumption” peaches were used as general guidelines to determine the optimum harvest maturity of all four cultivars. The NMF fruit ripened directly had wider optimum harvest maturity ranges and could be harvested at more advanced stages than the MF fruit. The MF fruit that ripened following low temperature storage needed to be picked at earlier maturity stages than those that were directly ripened. The optimum harvest maturity of NMF UFSun for the low temperature storage treatment was more advanced than that of the other three cultivars due to abnormal softening found in the lower MGs after ripening. Linear correlation analyses showed that the skin ground color (GC) a* values of both MF cultivars and NMF ‘UFSun’ were highly correlated with the flesh color (FC) a* values, suggesting that GC a* values can be an informative harvest indicator for this NMF cultivar instead of the traditionally used FC. The GC a* values also had high linear correlation with TA for all four cultivars, suggesting that TA can be a potential maturity index for both MF and NMF peaches. Significant correlations of GC a* values and flesh firmness (GC-FF) were found in all four cultivars in one year but only in MF peaches in both years, showing that flesh firmness was the most consistent maturity indicator for the MF cultivars in this study.

Full access

George J. Hochmuth, Jeffrey K. Brecht, and Mark J. Bassett

Potassium (K) is required for successful carrot (Daucus carota) production on sandy soils of the southeastern United States, yet there is little published research documenting most current university Cooperative Extension Service recommendations. Soil test methods for K in carrot production have not been rigorously validated. Excessive fertilization sometimes is practiced by carrot growers to compensate for potential losses of K from leaching and because some growers believe that high rates of fertilization may improve vegetable quality. Carrots were grown in three plantings during the winter of 1994-95 in Gainesville, Fla., to test the effects of K fertilization on carrot yield and quality on a sandy soil testing medium (38 ppm) in Mehlich-1 soil-test K. Large-size carrot yield was increased linearly with K fertilization. Yields of U.S. No. 1 grade carrots and total marketable carrots were not affected by K fertilization. K fertilizer was not required on this soil even though the University of Florida Cooperative Extension Service recommendation was for 84 lb/acre K. Neither soluble sugar nor carotenoid concentrations in carrot roots were affected by K fertilization. The current K recommendation for carrots grown on sandy soils testing 38 ppm Mehlich-1 K could be reduced and still maintain maximum carrot yield and root quality.

Free access

George J. Hochmuth, Jeffrey K. Brecht, and Mark J. Bassett

Nitrogen is required for successful carrot production on sandy soils of the southeastern United States, yet carrot growers often apply N in amounts exceeding university recommendations. Excessive fertilization is practiced to compensate for losses of N from leaching and because some growers believe that high rates of fertilization improve vegetable quality. Carrots (Daucus carota L.) were grown in three plantings during Winter 1994–95 in Gainesville, Fla., to test the effects of N fertilization on yield and quality. Yield increased with N fertilization but the effect of N rate depended on planting date; 150 kg·ha–1 N maximized yield for November and December plantings but 180 kg·ha–1 N was sufficient for the January planting. Concentration of total alcohol-soluble sugar was maximized at 45 mg·g–1 fresh root with 140 kg·ha–1 N for `Choctaw' carrots, whereas sugar concentration of `Scarlet Nantes' roots was not affected by N fertilization. Carrot root carotenoid concentration was maximized at 55 mg·kg–1 fresh root tissue with 160 kg·ha–1 N. Generally, those N fertilization rates that maximized carrot root yield also maximized carrot quality as determined by sugar and carotenoid concentrations.

Free access

Angelos I. Deltsidis, Charles A. Sims, and Jeffrey K. Brecht

Harvesting before ripening initiation (i.e., mature green) may negatively affect the flavor of fresh tomatoes (Solanum lycopersicum) even though the ripening process off the vine is physiologically the same as that on the plant. Low temperature storage at or below the putative chilling injury (CI) threshold can also have detrimental effects on fresh tomato flavor regardless of the developmental stage of the fruit at harvest, but sensitivity to CI declines with ripening. Controlled atmospheres (CA) using reduced oxygen and elevated carbon dioxide partial pressures can extend the shelf life (SL) of tomatoes while possibly minimizing the negative effects of low temperatures. In this study, we explored the possibility that a combination of temperature and CA could be used to achieve similar SL for pink-harvested tomatoes as has been found in other studies with green-harvested fruit while avoiding the negative effects of CI on sensory quality. Consumer panels were given samples of pink-harvested tomatoes after they had reached the red ripeness stage in terms of surface hue following storage for 7 days in air or CA at 7.5, 15, or 20 °C followed by 2–7 days ripening in air at 20 °C. Exposing pink tomatoes to 7.5 °C before ripening to the full-red stage at 20 °C negatively affected fruit sensory quality, holding fruit constantly at 20 °C until they reached the full-red stage resulted in better quality for one taste panel, whereas there was no difference in another taste panel. The time to reach the full-red stage was extended by CA. Sensory quality of air- and CA-stored fruit was similar at the nonchilling temperatures of 15 and 20 °C. Pink stage tomato fruit stored in CA at 7.5 °C for 7 days did not attain full red color within the subsequent 7 days in air at 20 °C.

Free access

Steven A. Sargent, Jeffrey K. Brecht, and Judith J. Zoellner

Internal bruising (IB) caused by handling impacts results in disruption of normal ripening in tomato (Lycopersicon esculentum Mill.) locular gel. It was selected as an injury indicator to investigate the effect of drop height (O, 10, 20, 30 cm) onto an unpadded surface and number of impacts (one or two) for three tomato cultivars. For mature-green (MG) tomatoes, significant incidence of IB (5% to 45%) was found in all cultivars for single drops on opposite sides of fruits from 20 cm; two drops on the same location from 20 cm caused 20% to 30% IB. Breaker-stage (BR) tomatoes were more sensitive to impacts than MG. Single drops from 10 cm on opposite sides of BR fruits caused 15% to 73% IB, depending on cultivar. Two drops on a single location from 10 cm caused 50% to 68% IB. `Sunny' was less susceptible to IB than `Solar Set' or `Cobia' (formerly NVH-4459).