Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jeffrey C. Dunne x
Clear All Modify Search

Drain tile installation into a native-soil athletic field and subsequent sand topdressing applications are cost-effective alternatives to complete field renovation. However, if cumulative topdressing rates exceed root system development, surface stability may be compromised. The objective of this research was to evaluate the effects of cumulative topdressing, over a compacted sandy loam soil, on the fall wear tolerance and surface shear strength of a kentucky bluegrass (Poa pratensis)–perennial ryegrass (Lolium perenne) stand. Research was initiated in East Lansing, MI, on 10 Apr. 2007. A well-graded, high-sand-content root zone (90.0% sand, 7.0% silt, and 3.0% clay) was topdressed at a 0.25-inch depth [2.0 lb/ft2 (dry weight)] per application, providing cumulative topdressing depths of 0.0, 0.5, 1.0, 1.5, or 2.0 inches applied from 11 July to 15 Aug. 2007. Fall traffic was applied twice weekly to all treatments from 10 Oct. to 3 Nov. 2007. In 2008, topdressing applications and traffic, as described earlier, were repeated on the same experimental plots. Results obtained from this research suggest that the 0.5-inch topdressing depth applied over a 5-week period in the summer will provide improved shoot density and surface shear strength in the subsequent fall. Results also suggest that topdressing rates as thick as 4.0 inches accumulated over a 2-year period will provide increased shoot density, but diminished surface shear strength.

Full access

Bermudagrass, Cynodon spp. is one of the most commonly grown turfgrass genera in the southern United States having excellent drought tolerance, but poor tolerance to shade. Developing cultivars tolerant to shade would allow bermudagrass to become more prevalent in home lawns or other recreational areas in the southeast, where trees dominate the landscape. In this field study, nine accessions collected from Pretoria, South Africa were evaluated for their ability to grow under shade with varying fertility treatments. These accessions and cultivars ‘Celebration’, ‘TifGrand’, and ‘Tifway’ were evaluated under 0%, 63%, and 80% continuous shade during 2011–12. For both years, significant differences among shade levels, genotypes, and the interaction of the two were observed. As expected, the progression from 0% to 63% to 80% shade reduced normalized difference vegetation index (NDVI), percent turfgrass cover (TC), and turf quality (TQ) readings for all accessions. Some genotypes, however, were able to maintain adequate quality and aggressiveness under 63% shade. ‘Celebration’, WIN10F, and STIL03 performed better than ‘Tifway’ (P ≤ 0.05), the susceptible control. Overall, our results indicate that there are promising genotypes among the bermudagrass materials collected from South Africa. These accessions represent additional sources of shade hardiness to be used in bermudagrass breeding. Furthermore, higher nitrogen fertility provided increased NDVI and TQ in some instances suggesting an added benefit of fertility under low-light conditions. However, the increased economic value attributed to the added inputs associated with these increases is outweighed by the low impacts offered.

Free access