Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Jeffrey A. Andresen x
Clear All Modify Search

A simulation model for determining flower bud phenological stages and fruit growth as a function of daily maximum and minimum temperatures was developed for `Montmorency' sour cherry (Prunus cerasus L.). The models were developed and tested with observations collected in the three major sour cherry production areas in Michigan located in northwestern, western central, and southwestern sections of the lower peninsula. Observations of flower bud phenology and fruit diameter were collected at 3- to 7-day intervals, in spurs and terminal shoots across multiple years. Nonlinear equations using accumulation of growing degree-days (base 4 °C) as an independent variable were fitted to observed flower bud phenological stages and fruit diameter, expressed as percentage of final fruit diameter. Simulated bud phenology stages were in agreement with observed data. Mean differences of simulated vs. observed dates of early phenological stages in the three production areas were between 4 and 1 days for side green and near 0 days for tight cluster, while during later stages (e.g., first bloom and full bloom) mean differences ranged from -2 to 0 days. Means differences of predicted fruit diameter were in the range of 0 to -3 days. Needing only daily temperature data, these simulation models have potential applicability in improving the timing and efficiency of management decisions related to crop phenology, such as pest control, fertilization, and irrigation.

Free access

Concern in the agricultural community over observed and projected climate change has prompted numerous studies on the possible implications for crop yields. However, relatively little work has focused on disease management. In the upper Great Lakes region of the United States, late blight (Phytophthora infestans) of potato (Solanum tuberosum) is a temporally sporadic disease, occurring only when microclimate conditions within the canopy are favorable and inoculum is present. This and other studies indicate that historical climatological trends in the upper Great Lakes region have resulted in warmer and wetter growing season conditions, as well as local increases in precipitation totals and in the frequency of days with precipitation. Consequently, the risk of potato late blight is increasing. Historical trends in hourly weather variables and potato late blight risk as expressed by a modified Wallin disease severity value index were analyzed at seven regional weather stations from 1948–99. All sites showed significant trends in at least one of the risk estimates. While late blight risk was greatest at all locations in August, periods of increasing risk occurred across the region particularly during July. The increases in disease risk appeared to be associated with upward trends in dry bulb and dew point temperature at nearly all of the stations, especially during July and August. Increased risk of potato late blight has implications for extension agents and commercial horticulturists that include increased emphasis on grower education and application of integrated disease management techniques.

Full access

The objectives of this study were to quantify irrigation volume, runoff volume and nutrient content, and plant growth of container-grown conifers when irrigated based on plant daily water use (DWU) vs. a standard irrigation rate. Four conifer taxa were grown in 10.2-L (no. 3) containers subjected to four irrigation treatments from 23 June to 16 Oct. 2009 and 6 June to 31 Oct. 2010. The taxa were: 1) Chamaecyparis obtusa Sieb. & Zucc. ‘Filicoides’, 2) Chamaecyparis pisifera (Sieb. & Zucc.) Endl. ‘Sungold’, 3) Thuja occidentalis L. ‘Holmstrup’, and 4) Thuja plicata D. Donn ‘Zebrina’. The four irrigation treatments were: 1) control application of 19 mm·d−1, 2) irrigation applied to replace 100% DWU (100 DWU) per day, 3) applications alternating 100% with 75% DWU in a 2-day cycle (100–75 DWU), and 4) a 3-day application cycle replacing 100% DWU the first day and 75% DWU on the second and third days (100–75–75 DWU). Irrigation treatments did not affect plant growth index {GI= [(H + WNS + WEW)/3]} in 2009. In 2010, GI of C. obtusa ‘Filicoides’ was greater for 100 DWU than the control plants. Seasonal total water applied for 100, 100–75, and 100–75–75 DWU was 22%, 32%, and 56% less, respectively, than the control amount of 117 L per container in 2009 (114 days) and 24%, 18%, and 24% less than the control amount of 165 L per container in 2010 (147 days). Scheduling irrigation based on DWU reduced runoff volumes and (nitrate-nitrogen) NO3 -N and (phosphate-phosphorous) PO4 3−-P load compared with the control. Irrigating based on DWU reduced water application and runoff volumes and NO3 -N and PO4 3−-P load while producing plants of equal or greater size than control plants.

Free access

Irrigation scheduling based on plant daily water use (DWU) to conserve water without adversely affecting plant growth compared with a traditional irrigation rate was investigated for 25 common container-grown woody ornamentals. Ten different taxa were grown in 2006 and 2007 and five in 2008 in 10.2-L (No. 3) containers. Overhead irrigation was applied in four treatments: 1) a control irrigation rate of 19 mm (1.07 L per container) per application (control); 2) irrigation scheduled to replace 100% DWU per application (100DWU); 3) irrigation alternating every other application with 100% replacement of DWU and 75% DWU (100-75); and 4) irrigation scheduled on a three application cycle replacing 100% DWU followed by two applications of 75% DWU (100-75-75). Irrigation applications were separated by at least 24 h. Daily water use was calculated by measuring the difference in volumetric moisture content 1 h and approximately 24 h after irrigation. The three DWU treatments reduced total irrigation applied 6% to 75% compared with the control depending on treatment and species, except for Buddleja davidii ‘Guinevere’ in which total irrigation applied by the 100DWU, 100-75, and 100-75-75 treatments was 26%, 10%, and 5%, respectively, greater than the amount applied to the control. Final growth index [(plant height + width A + width B)/3] of all DWU treatments was greater than or equal to the control for all taxa. Forsythia ×intermedia ‘New Hampshire Gold’, Hydrangea arborescens ‘Dardom’, Hydrangea paniculata ‘Unique’, and Weigela florida ‘Wilma’ had higher water use efficiencies (estimated as the change in growth index per liter of water applied) at lower irrigation treatment volumes with no differences in growth index or growth index increase, indicating that further irrigation reductions may be possible without affecting growth. PourThru electrical conductivity of H. arborescens ‘Dardom’, Spiraea fritschiana ‘Wilma’, and Viburnum ×burkwoodii ‘Chenaultii’ measured in 2007 did not accumulate to damaging levels. Final plant size of all taxa under DWU treatments was the same or greater than the control and substantially less water was applied under DWU treatments except for B. davidii ‘Guinevere’.

Free access

Container-grown woody ornamentals were irrigated according to a percentage of daily water use (DWU) or a traditional irrigation rate to evaluate plant growth, irrigation volume, runoff, and nutrient loss from each irrigation treatment. Deutzia gracilis Sieb. and Zucc. ‘Duncan’, Kerria japonica (L.) DC. ‘Albiflora’, Thuja plicata D. Don. ‘Atrovirens’, and Viburnum dentatum L. ‘Ralph Senior’ were grown in 10.2-L (# 3) containers under four overhead irrigation treatments: 1) a control irrigation rate of 19 mm per application (control); 2) irrigation scheduled to replace 100% DWU per application (100DWU); 3) irrigation alternating every other application with 100% replacement of DWU and 75% DWU (100–75); and 4) irrigation scheduled on a three-application cycle with one application of 100% DWU followed by two applications replacing 75% DWU (100–75–75). Applications were separated by at least 24 h. Total irrigation applied for the 100DWU, 100–75, and 100–75–75 treatments was 33%, 41%, and 44% less, respectively, than the total water applied by the control treatment of 123 L per container. Plants grown under the three DWU treatments had a final growth index greater than or equal to plants irrigated by the control treatment depending on species. Daily average runoff volumes from production areas irrigated with 100% and 75% DWU were 66% and 79% lower than average control runoff of 11.4 L·m−2·d−1 across all collection days. Quantity of NO3 -N lost daily across all collection days for the 100% DWU and 75% DWU irrigation volumes averaged 38% and 59% less, respectively, than the control. Daily losses of PO4 3–- P quantities across all collection days under the 100% and 75% DWU volumes were 46% and 74% lower, respectively, compared with the control. Irrigating according to the DWU treatments used in this study reduced irrigation and runoff volumes and NO3 -N and PO4 3–-P losses compared with a control of 19 mm per application while producing the same size or larger plants.

Free access

Green roofs are an increasingly common, environmentally responsible building practice in the United States and abroad. They represent a new and growing market for the horticulture field, but require vegetation tolerant of harsh environmental conditions. Historically, Sedum species have been the most commonly used plants because, with proper species selection, they are tolerant of extreme temperatures, high winds, low fertility, and a limited water supply. A greenhouse study was conducted to determine how water availability influences growth and survival of a mixture of Sedum spp. on a green roof drainage system. Results indicate that substrate volumetric moisture content can be reduced to 0 m3·m–3 within 1 day after watering depending on substrate depth and composition. Deeper substrates provided additional growth with sufficient water, but also required additional irrigation because of the higher evapotranspiration rates resulting from the greater biomass. Over the 88 day study, water was required at least once every 14 days to support growth in green roof substrates with a 2-cm media depth. However, substrates with a 6-cm media depth could do so with a watering only once every 28 days. Although vegetation was still viable after 88 days of drought, water should be applied at least once every 28 days for typical green roof substrates and more frequently for shallower substrates to sustain growth. The ability of Sedum to withstand extended drought conditions makes it ideal for shallow green roof systems.

Free access

Some highbush blueberry (Vaccinium corymbosum) fields adjacent to Michigan roads exhibit abnormally high levels of winter fl ower bud mortality and twig dieback, even following relatively mild winters. This work was conducted to determine if this injury was caused by deicing salts (primarily sodium chloride) that are applied to adjacent roads and blown by the wind onto bushes. Flower bud mortality was recorded in the spring at several locations within six farms adjacent to divided highways treated with deicing salts. Four farms were east of highways (downwind of prevailing wind direction) and two were west (upwind) of highways. Each May for 3 years, the numbers of live and dead fl ower buds were counted on plants located varying distances from the highway. Bush position and distance from the highway were determined with global positioning system (GPS) equipment. Bud health was also assessed monthly during the winter. In fields located downwind of highways, bud mortality was consistently greatest close to the road and decreased with distance. Salt had an apparent effect on mortality 60 to 120 m from the highway, depending on the year. In fields west or upwind of highways, bud mortality was not consistently related to distance from the highway. Flower bud injury was evident by mid-January, and increased throughout the winter. Results indicated that wind-blown salt spray can cause considerable injury in blueberry fields close to salted roads.

Full access