Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Jeff B. Million x
Clear All Modify Search
Free access

Jeff B. Million and Thomas H. Yeager

The capacity for container-grown plants to capture sprinkler irrigation water plays a critical role in adjusting irrigation rates to deliver required amounts of water to the container substrate. The capture factor (CF) used to describe this capacity was defined as the amount of water captured with a plant relative to the amount captured without a plant. A wind-sheltered, irrigation test area was established to measure CF as affected by plant species, plant size, container size, container spacing, and sprinkler type. CF values for 11 marketable-sized, commonly grown plant species ranged from 1 to 4 with highest values exhibited by plant species with an upright, spreading growth habit. CF values increased as plant size increased. Close container spacings (less than one container diameter between adjacent containers) reduced CF when the allotted area outside the container limited the potential amount of water that could be captured. Compared with impact sprinklers, wobbler sprinklers increased irrigation capture 7% for Ligustrum japonicum grown in 27-cm-diameter containers but not in 16-cm-diameter containers. Results showed that CF is a dynamic parameter that depends on canopy size, container size, container spacing, and sprinkler type. A working knowledge of CF is crucial for determining irrigation requirements to maximize sprinkler irrigation efficiency in container nurseries.

Open access

Jeff B. Million and Thomas H. Yeager

Irrigation scheduling in container nurseries is challenging due to the wide range of plant production conditions that must be accounted for at any given time. An irrigation scheduling system should also consider weather affecting evapotranspiration to apply proper amounts of water that will ensure optimal growth with minimal runoff (container drainage). We developed an automated system that relies on routine leaching fraction (leachate/water applied) testing and real-time weather recorded on-site to make adjustments to irrigation. A web-based program (CIRRIG) manages irrigation zone inputs [weather and leaching fraction (LF) test results] and outputs irrigation run times that can be implemented automatically with programmable logic controllers. In this study conducted at a nursery in central Florida, we compared the automated technology (CIRRIG) with the nursery’s traditional irrigation practice (TIP) of manually adjusting irrigation based on substrate moisture status of core samples taken twice weekly. Compared with TIP, CIRRIG reduced water use in six of seven unreplicated trials with water savings being greater for microirrigated crops grown in large containers than for sprinkler-irrigated crops in small containers. Reduced pumping cost associated with water savings by CIRRIG was estimated to be $3250 per year, which was insignificant compared with the labor savings of $35,000 to $40,000 anticipated by the nursery using CIRRIG in lieu of TIP. At the end of the project, the necessary hardware was installed to expand CIRRIG nursery-wide and control 156 zones of irrigation.

Full access

Jeff B. Million and T.H. Yeager

A goal of irrigation best management practices in container nurseries is to conserve water while maintaining optimal plant growth and quality. A web-based, container irrigation management program (CIRRIG) was developed to automatically provide daily irrigation run times for sprinkler-irrigated crops in container nurseries. The program estimates evapotranspiration rates based on weather uploaded from a weather station located on-site and plant production conditions monitored in each zone and adjusts irrigation run times based on irrigation application rate, the plant’s irrigation-capturing ability (for sprinkler irrigation), desired leaching fraction, and irrigation system uniformity. For this project we interfaced CIRRIG output with a programmable logic controller (PLC) to automatically irrigate a sprinkler-irrigated crop at a container nursery in Florida. Sweet viburnum (Viburnum odoratissimum) in 10-inch-diameter containers were grown by the nursery for 24 weeks in adjacent irrigation zones, one controlled automatically using CIRRIG and the other by the nursery’s traditional practice of manually turning on and off irrigation. Water use was monitored with flowmeters and plant growth by measuring plant size and shoot dry weight periodically throughout the trial. Plant growth was not different (P < 0.05) because of irrigation practice. CIRRIG reduced water use during the study period by 21% (42 vs. 53 inches) compared with the nursery’s irrigation practice. An assessment of the water-saving benefits of making daily adjustments to irrigation run times based on weather including rain indicated savings of 25% and 40% compared with biweekly adjustments with and without automatic rain cutoff, respectively. This trial demonstrated that CIRRIG coupled with an on-site weather station and a computer-controlled irrigation system can be used to manage irrigation while conserving water in a container nursery.

Free access

Jeff B. Million*, Thomas H. Yeager and Joseph P. Albano

The influence of production practices on runoff from container nurseries was investigated in Spring 2003 (March to July) and Fall 2003 (August to January). Viburnum odoratissimum (Ker-Gawl.) liners were planted in 3.8-L containers with a 2 pine bark: 1 sand: 1 Canadian peat substrate and placed on 1.5 m2-platforms at one of two plant spacing densities: 16 or 32 plants/m2 [spaced to 16 plants/m2 after 13 weeks (spring) or 14 weeks (fall)]. Overhead sprinkler irrigation was applied daily (1 cm) and runoff collected weekly. Osmocote 18 N-2.6 P-10 K was surface-applied to each container (15 g) in the spring and surface-applied or incorporated in the fall. Cumulative runoff averaged 1240 L·m-1; in spring (19 weeks) and 1050 L·m-1; in fall (20 weeks), which represented 72% and 66% of applied irrigation plus rainfall, respectively. The lower density spacing resulted in a 19% increase in cumulative runoff in spring (1340 vs. 1130 L·m-1) but had no effect in fall (970 vs. 890 L·m-1). Weighted average ECwa of runoff decreased 10% (0.436 vs. 0.485 dS·m-1) and 12% (0.420 vs. 0.476 dS·m-1) with the lower density spacing in spring and fall, respectively. ECwa in fall was not affected by fertilizer method. Plant size index [(height + width)/2] was reduced 22% in both spring (38.7 vs. 49.7 cm) and fall (26.9 vs. 34.4 cm) when plants were grown at the lower density spacing throughout production. This reduction in plant size was attributed to container heat stress. Plant size was unaffected by fertilizer application method (fall) but fertilizer incorporation resulted in greener plants than surface-applied fertilizer (60 vs. 53 SPAD readings).

Free access

Jeff B. Million, Thomas H. Yeager and Joseph P. Albano

The capacity for evapotranspiration (ET)-based irrigation scheduling to reduce runoff volume and nutrient leaching was tested in Fall 2004 and Spring 2005. Runoff (container leachate plus unintercepted irrigation and precipitation) was collected continuously for 17 weeks during production of sweet viburnum [Viburnum odoratissimum (L.) Ker Gawl.] in 2.4-L (16-cm top diameter) containers fertilized with an 18N–2.6P–10K polymer-coated, controlled-release fertilizer. Treatments were a factorial arrangement of two irrigation rates (fixed rate of 1 cm·d−1 or a variable, ET-based rate) and two fertilizer rates (15 or 30 g/container in 2004 and 10 or 15 g/container in 2005). Averaged over the two experiments and compared with the 1-cm·d−1 rate, ET-based irrigation reduced the amount of irrigation water applied (L/container) by 39% and runoff volume (L/container) by 42% with greatest reductions observed during the second half of the 2004 experiment and the first half of the 2005 experiment. Compared with 1-cm·d−1 rate, ET-based irrigation reduced runoff nitrogen (N), phosphorus (P), and potassium (K) (mg/container) by 16%, 25%, and 22%, respectively, in 2004 and runoff K 15% in 2005 with irrigation effects varying on a weekly basis. Irrigation treatments did not affect the response of plants to fertilizer rate. Because shoot dry weight was unaffected by irrigation treatments, results indicate that compared with a fixed irrigation rate, ET-based irrigation can reduce irrigation and runoff volumes and to a lesser extent nutrient loss while providing adequate water for plant growth.

Free access

Jeff B. Million, James E. Barrett and Terril A. Nell

Drench applications of paclobutrazol (PBZ) are becoming increasingly popular as a means for controlling height in potted plants, and research is being conducted to quantify the distribution of PBZ following applications. In one trial, 120 ml of 0 or 1 mg 1-1 PBZ were applied to 15-cm pots filled with either Vergro Klay Mix (no bark) or Metro Mix 500 (bark). A bioassay using broccoli (Brassica oleracea L. Italica) seedlings was used to quantify PBZ in leachates and media following treatment drenches. Leachate PBZ concentrations were lower for Vergro than for Metro Mix 500; however, leachates for both media were <0.1 mg·liter–1. Concentrations of PBZ in media decreased with depth and were four to 10 times higher in the uppermost 2.5 cm than in lower horizons. For the uppermost 2.5 cm of media, higher PBZ concentrations were recovered in Metro Mix 500 than in Vergro. A follow-up study will compare surface vs. subsurface application methods on the movement of PBZ into pots.

Free access

Jeff B. Million, James E. Barrett, Terril A. Nell and David G. Clark

Dendranthema×grandiflorum (Ramat.) were grown in either a peat-based or pine bark—based medium and drenched with growth retardants at a range of concentrations to generate dose : response curves. The effect of ancymidol, paclobutrazol, and uniconazole on stem elongation was less in the pine bark—based than in the peat-based medium. Generally, the concentrations required to achieve the same response were 3- to 4-fold as high in the pine bark—based medium as in the peat-based medium. However, chlormequat was slightly more active in the pine bark—based medium than in the peat-based medium. Chemical names used: α-cyclopropyl-α—(4-methoxyphenyl)-5-pyrimidinemethanol (ancymidol); (±)-(R*,R*)-β-[(4-chlorophenyl)methyl]-α-(1,1-di methyl)-1H-1,2,4-triazole-1-ethanol (paclobutrazol); (E)-(RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pent -l-en-3-ol (uniconazole); 2-chloroethyltrimethylammonium chloride (chlormequat).

Free access

Susan C. Miyasaka, Jeff B. Million, Nguyen V. Hue and Charles E. McCulloch

Possible boron (B) deficiency symptoms were observed on avocado (Persea americana Mill. `Sharwil') grown in Kona, Hawaii. To determine the B requirement of young, `Sharwil' avocado trees, two greenhouse experiments were conducted. In a soil study, seven B treatments (0, 3.7, 11, 22, 44, 89, and 178 mg·kg–1 soil fines) were applied to 1-year-old grafted `Sharwil' avocado trees grown for 13 weeks in a Tropofolist soil. Due to the low and variable fractions of soil fines in this rocky soil, extractable soil B concentration did not appear to be a good predictor of B requirements by avocados. Adequate foliar B concentrations in `Sharwil' avocado trees based on dry weight and area of new leaves ranged from 37 (±3) to 65 (±4) and from 31 (±10) to 78 (±13) mg·kg–1 (dry-weight basis), respectively. (Means are followed by standard errors of the mean in parentheses.) In a hydroponics study, 6-month-old grafted `Sharwil' avocado trees were supplied with four levels of B (0, 1, 10, and 100 μm). At 11 months after B treatment initiation, leaves with deformed margins and a “shot-hole” appearance were first observed at a solution level of 0 μm B. At 14 months after B treatment initiation, foliar B concentrations that were associated with 12% to 14% incidence of deformed leaves ranged from 9.8 to 13.5 mg·kg–1 (dry-weight basis). Although `Sharwil' avocados are reportedly susceptible to B deficiency, foliar B concentrations required for adequate growth and those associated with B deficiency symptoms are similar to those for other cultivars.

Free access

Jeff B. Million, James E. Barrett, Terril A. Nell and David G. Clark

A broccoli (Brassica oleracea var. botrytis L.) seedling bioassay was used to measure paclobutrazol activity and distribution in two growing media following drench or subirrigation applications. The bioassay exhibited a saturation-type response curve for paclobutrazol concentrations up to 1000 μg·L-1 in solution and 100 μg·L-1 in the media. The concentration of paclobutrazol required to achieve one-half of the maximum observed bioassay activity was 3-fold as high in bark-based commercial potting medium as in a peat-based medium. Less than 2% of applied paclobutrazol leached out during the drench application despite the collection of up to 50 mL of leachate per 120 mL of the solution (1000 μg·L-1) that was applied per 15-cm pot. Immediately following drench application, paclobutrazol concentrations in both media were highest in the uppermost 2.5 cm and decreased downward. By 3 weeks after treatment, drench-applied paclobutrazol had moved into lower depths. Distribution of paclobutrazol was limited to the bottom 2.5 cm of media when applied as a subirrigation soak. Chemical name used: (±)-(R*,R*)-β-[(4-chlorophenyl)methyl]-α-(1,1-dimethyl)-1H-1,2,4-triazole-1-ethanol (paclobutrazol).