Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Jean-Jacque Dubois x
Research by the authors has demonstrated the effect of day/night temperature difference (Tdiff) on plant growth is as substantive as the effect of daily average temperature (DAT). Dependence of plant primary productivity on temperature cannot be assessed with fewer than two data per 24 hours. Thus, the same experimental approach was applied to time to anthesis in Delphinium cultorum Voss `Magic Fountains' and Stokesia laevis L. `White Parasols', and to survival in D. cultorum. Two hundred and seventy seedlings of D. cultorum and 72 plantlets of S. laevis were grown for 56 days in growth chambers under eighteen 12 hour day/12 hour night combinations of six day and six night temperatures (10, 15, 20, 25, 30, or 35 °C). Ninety plants of D. cultorum were harvested after 13, 34, or 56 days, and 36 plants of S. laevis after 34 or 56 days. For each event of interest (anthesis or death), one datum per plant was recorded, consisting of time elapsed when either the event occurred, or the plant was harvested, whichever came first. Each datum was paired with an indicator of whether the plant was harvested prior to the event being observed. Data were analyzed using time—to—event data analysis procedures. Several parametric distributions fitted the data equally well, and both day and night temperature had strong effects on time to anthesis and survival time. However, in contrast with biomass production, DAT was quite sufficient to account for timing of these developmental events in relation to temperature. Addition of Tdiff contributed marginally to the fit to the data, but the magnitude of the effect was considerably smaller. Within the range of temperatures likely to be encountered in cultivation, the effect was negligible.
In 2014, the Southern Nursery Integrated Pest Management (SNIPM) Working Group published both print and electronic versions of IPM for Shrubs in Southeastern U.S. Nursery Production: Volume I. Five hundred print books (of 3000 copies) were distributed to commercial ornamental growers and extension educators in return for their participation in a follow-up survey. The survey was administered to determine the value of book contents, savings that growers realized from using the book, perceived value of the book had users been asked to pay for it, and demographic information. The survey response rate was 46.2%, with respondents from 18 states. Of 243 respondents, 194 (79.8%) had used the book. Entomology information was most used and most useful, followed by plant pathology, weed science, and cultural information. Collective savings attributed to book use totaled $408,832/year for the 194 nurseries that used the book. Applying the use rate (79.8%) identified in this survey, this represents $5.62 million in savings per year for the 3000 printed books, of which 2394 are estimated to have been used. Savings varied by the type and size of operation. Larger operations had greater savings per year. Container growers saved $44.15/acre and field growers $28.37/acre. The price that growers were willing to pay for the book also varied by operation type and size. Extension educators and growers were willing to pay an average of $41.20, with an additional $0.063/acre for container growers and $0.126/acre for field growers. Return on investment for the U.S. Department of Agriculture grant funding for the project was $187.60 per dollar of funding. This survey demonstrates that collaborative efforts can produce high-value deliverables with significant regional and/or national impact.
Three, 2-day hands-on experiential learning workshops were presented in three southeastern United States cities in June 2014, by the Southern Nursery Integrated Pest Management (SNIPM) working group. Attendees were provided 4 hours of instruction including hands-on demonstrations in horticultural management, arthropods, plant diseases, and weeds. Participants completed initial surveys for gains in knowledge, skills, and abilities as well as their intentions to adopt various integrated pest management (IPM) practices after the workshop. After 3 years, participants were again surveyed to determine practice adoption. Respondents changed their IPM practice behavior because of attending the workshops. Those returning the survey set aside more time to scout deliberately for pests, plant diseases, and weeds; used a standardized sampling plan when scouting; and adopted more sanitation practices to prevent plant disease. Fewer horticultural management practices were adopted than respondents originally intended. Future emphasis should be placed on using monitoring techniques to estimate pest emergence, for example, traps and pheromone lures, as well as plant phenology and record keeping. However, more work is needed to highlight both the immediate and long-term economic benefits of IPM practice adoption in southeastern U.S. nursery production.