Search Results
2-[N-morpholino] ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome: ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 m m) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite: 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g·m-2·day-1) were about double that of the control (8.2 g·m-2·day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g·m-2·day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mm MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.
An artificial neural network (NN) and a statistical regression model were developed to predict canopy photosynthetic rates (Pn) for `Waldman's Green' leaf lettuce (Latuca sativa L.). All data used to develop and test the models were collected for crop stands grown hydroponically and under controlled-environment conditions. In the NN and regression models, canopy Pn was predicted as a function of three independent variables: shootzone CO2 concentration (600 to 1500 mmol·mol-1), photosynthetic photon flux (PPF) (600 to 1100 μmol·m-2·s-1), and canopy age (10 to 20 days after planting). The models were used to determine the combinations of CO2 and PPF setpoints required each day to maintain maximum canopy Pn. The statistical model (a third-order polynomial) predicted Pn more accurately than the simple NN (a three-layer, fully connected net). Over an 11-day validation period, average percent difference between predicted and actual Pn was 12.3% and 24.6% for the statistical and NN models, respectively. Both models lost considerable accuracy when used to determine relatively long-range Pn predictions (≥6 days into the future).
`Takinogawa Long' gobo was seeded with two, three, or four rows per 1.5-m bed at in-row spacings of 7.5, 15, 21.5, and 30 cm. Total and marketable increased with in-row spacing and marketable yield increased with row number with the greatest yields occurring at 15, regardless of row number. Average root weight and yield of forked roots was not affected by row number, but increased with in row spacing. Similarly, percentage of forked roots decreased with more rows per bed. The 15-cm in-row spacing had the greatest yield, but also the greatest weight of culled roots, but none of the populations affected the percentage culls. In another study, in-row subsoiling (SS) and in-row banded phosphorus (P) were evaluated. Marketable yield was increased by both SS and P, but they did not interact. P increased average root weight. Neither SS or P affected forked root yield or cull root yield, but SS decreased forked roots and increased cull production.
Effects of N level (15 to 30 mm), time of N increase (14 to 28 days after planting), and planting density (1163 to 2093 plants/m2) were determined for crop yield responses of dwarf, rapid-cycling brassica (Brassica napus L., CrGC 5-2, Genome: ACaacc). Crops were grown in solid-matrix hydroponic systems and under controlled-environment conditions, including nonsupplemented (ambient) or elevated CO2 concentrations (998 ± 12 μmol·mol-1). The highest seed yield rate obtained (4.4 g·m-2·day-1) occurred with the lowest N level (15 mm) applied at the latest treatment time (day 28). In all trials, CO2 enrichment reduced seed yield rate and harvest index by delaying the onset of flowering and senescence and stimulating vegetative shoot growth. The highest shoot biomass accumulation rate (55.5 g·m-2·day-1) occurred with the highest N level (30 mm) applied at the earliest time (day 14). Seed oil content was not significantly affected by CO2 enrichment. Maximum seed oil content (30% to 34%, dry weight basis) was obtained using the lowest N level (15 mm) initiated at the latest treatment time (day 28). In general, an increase in seed oil content was accompanied by a decrease in seed protein. Seed carbohydrate, moisture, and ash contents did not vary significantly in response to experimental treatments. Effects of N level and time of N increase were consistently significant for most crop responses. Planting density was significant only under elevated CO2 conditions.
A solid-matrix-over-liquid (hybrid) growth system was developed for direct sowing of small-seeded crop species into hydroponic culture and compared for performance with a standard solid-matrix, capillary-wick hydroponic system. Seeds were sown directly onto a 3-cm (1.2-inch) deep soilless seed bed occupying 0.147 m2 (1.582 ft2) within a tray. The planted seed bed was moistened by wicking up nutrient solution through polyester wicking material from a 7.0-L (6.6-qt) reservoir just below the matrix seed bed. The hybrid system successfully grew dense [435 plants/m2 (40.4 plants/ft2)], uniform canopies of dwarf Brassica napus L. in a controlled-environment growth room. Seed yield using the hybrid system was twice that achieved with the matrix-based system. Both systems eliminated the labor needed to transplant many small seedlings from a separate nurse bed into a standard bulk liquid hydroponic system. Root-zone pH extremes caused by ion uptake and exchange between roots and unrinsed soilless media were avoided for the hybrid system by the short dwell time of roots in the thin matrix before they grew through the matrix and an intervening headspace into the bulk solution below, where pH was easily managed. Once roots grew into the bulk solution, its level was lowered, thereby cutting off further capillary wicking action and drying out the upper medium. Beyond early seedling establishment, water and nutrients were provided to the crop stand only by the bulk nutrient solution. This hybrid hydroponic system serves as a prototype for largerscale soilless growth systems that could be developed for production of smallseeded crops in greenhouses or controlled environments.
The short time to flower and rapid production cycle of dwarf Brassica lines make it a promising candidate as an oilseed crop for NASA's Controlled Ecological Life Support Systems (CELSS) program. Breeding lines provided by Paul H. Williams are being screened at Purdue University for productivity and yield rate using soilless culture techniques under controlled-environment conditions. The small, irregularly-shaped Brassica seeds did not respond well to conventional methods of germination above the batch hydroponic systems, even when a variety of capillary ticking materials were used. At best, attaining uniformity of seedling stands required transplants, which compromised potential yield rates in terms of mechanical damage and inhibited seedling establishment. Present emphasis is on solid substrate soilless mixtures using passive ticking hydroponics systems. Crop growth rate, harvest index, and overall yield are being compared as a function of planting densities ranging from 117 to 1423 plants/m2 of growing area. Yield parameters are also being evaluated as a function of growth medium and level of ambient CO2 in the growth chamber atmosphere. Research sponsored by NASA Cooperative agreement NCC 2-100.