Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Jared Stoochnoff x
Clear All Modify Search
Restricted access

Peter M.A. Toivonen, Jared Stoochnoff, Kevin Usher, Changwen Lu, Paul A. Wiersma and Chunhua Zhou

The market value of the apple (Malus ×domestica Borkh.) cultivar Ambrosia is closely linked to the characteristic blush on the skin surface. For ‘Ambrosia’ orchards that produce consistently low levels of surface blush, the implementation of reflective rowcovering has improved surface coloration, but the reflected wavebands responsible for this enhanced color production have not been confirmed. This study consisted of two separate experiments: one conducted in the field to confirm reflective rowcovering efficacy and the other in a controlled environment cabinet to determine which waveband was enhancing red blush production. The red blush production in orchards with and without reflective rowcovering was then directly compared with the red blush produced on the surface of apples that were poorly colored at harvest and then exposed to visible, fluorescent, ultraviolet A (UVA), or ultraviolet B (UVB) light sources within the controlled environment chamber. Consequent analysis of the red blush color within the Commission Internationale de l’Eclairage a* and b* color space was conducted to evaluate the quality of the red blush pigment under each treatment in the field and the controlled environment chamber. The analysis revealed that the red blush that developed on apples from the reflective rowcover treatment most closely matched the red blush that developed in response to UVB exposure in the controlled environment cabinet. Further analysis of gene expression and anthocyanin contents in the ‘Ambrosia’ apples support the hypothesis that the primary driver for the characteristic red blush development, when reflective rowcovers are used, is increased exposure to UVB light.