Search Results

You are looking at 1 - 10 of 41 items for

  • Author or Editor: Janet Cole x
Clear All Modify Search
Free access

Roger Kjelgren and Janet Cole

We investigated water loss of shade trees over turf and asphalt in an arid and humid climate for Russian olive and silver maple. Total daily tree water loss, and dawn-to-dusk stomatal conductance (gs) and leaf temperature (Tl), as well as air temperature, surface temperature, and vapor pressure deficit, were measured in Logan, Utah, and Stillwater, Okla., in early and mid-summer. Midday air temperatures in mid-summer were similar at both locations, 30 to 35 °C. Comparable vapor pressure deficits (VPD, kPa) were much higher in Logan, 3.5–5.0, than Stillwater, 2–2.5. Differences in humidity and air temperature between asphalt and turf were negligible at both Stillwater and Logan. Midday surface temperatures for asphalt and turf averaged 34 and 50 °C, respectively, in Logan, but were 10 °C higher for both surfaces in Oklahoma. The effect of higher longwave radiation from hotter surfaces on stomatal conductance and water loss of trees over asphalt in Stillwater was not consistently different for either species from those over turf. However, at Logan, Tl of trees over asphalt were consistently 2 to 4 °C higher and gs was 10% to 20% lower than those over turf. Stomatal closure for trees over asphalt resulted in water loss that was the same or slightly lower as trees over turf. The effect of paved surfaces on tree water loss appears to be more pronounced in an arid than a humid climate. The combined effect of higher VPD in an arid region and greater longwave radiation from hotter paved surfaces induces stomatal closure that limits water loss, and likely photosynthesis. By contrast, in humid regions, increased tree radiation interception over asphalt does not appear to trigger stomatal closure due to lower VPD.

Full access

Janet C. Cole

Woody plant species were treated in 1995 and 1996 with 0, 1, 2, or 4 lb/acre (0, 1.1, 2.3, or 4.5 kg·ha-1) propazine (a.i.). Species studied in 1995 included rose-of-sharon (Hibiscus syriacus L. `Double Purple'), japanese boxwood (Buxus microphylla Sieb. & Zucc. `Green Mountain'), butterfly bush (Buddleia davidii var. Veitchiana Rehd. `Nanho Purple'), euonymus (Euonymus fortunei var. acutis Hand-Mazz. `Emerald n'Gold'), forsythia (Forsythia ×intermedia Zab. `Lynnwood Gold'), fire thorn (Pyracantha angustifolia Roem. `Gnome'), and japanese spiraea (Spiraea japonica L.f. `Goldflame'). Crape myrtle (Lagerstroemia indica L. `Acoma' and `Zuni') and juniper (Juniperus chinensis L. `Pfitzeriana') were added and euonymus and japanese spiraea were omitted in 1996. In both years, statistical analyses revealed differences in height and visual quality between plants exposed to propazine and control plants of some species; however, differences were inconsistent in that some plants treated with propazine were larger or rated better than control plants while other plants were smaller or of lower quality than their corresponding control plants. In all cases, differences among propazine treatments within each species were <1.2 inches (3 cm) in height while decreases in visual quality compared to control plants were most evident in plants receiving four times the recommended rate of propazine. The horticultural significance of these differences was, therefore, considered small, suggesting that all of the species tested are tolerant to propazine applied at the recommended rate of 1 lb/acre (1.1 kg·ha-1). Chemical names used: 6-chloro-N,N'-bis(1-methylethyl)-1,3,5-triazine-2,4-diamine (propazine).

Free access

LeAnne Newell and Janet C. Cole

WetEarth, a processed recycled newspaper product, was used in combination with pine bark, sand, and vermiculite as a growing medium for rose of Sharon and forsythia. Rose of Sharon was taller and had more leaves; more leaf area per plant; and greater leaf, stem, and root dry weights in all media containing recycled paper compared to plants grown in a medium consisting of 3 pine bark: 1 peat moss: 1 sand (by volume) (control). Forsythia grown in the control media were taller than those grown in any medium containing recycled newspaper. There was no difference in number of leaves per plant or leaf area of forsythia, regardless of growing medium. Physical and chemical properties of each medium also were investigated. All media containing recycled newspaper had a higher pH, porosity, and air space than the control medium.

Free access

Paula Craig and Janet C. Cole

Wet Earth (WE) is a recycled paper product being tested as a potential plant growth substrate. It is composed of 80% recycled paper, 18% diatomaceous earth, 1% CaO, and 1% humic acid by volume. Use of WE by commercial growers would reduce demand for both landfill space and for slowly renewable resources such as peat and pine bark. Evidence also suggests that WE reduces nitrate runoff. Objectives included: determining effects of WE on plant growth, examining effects of WE on NO3 and NH4 runoff from container plant production, and determining the chemical and physical properties that characterize WE as a growth substrate. Ratios of pine bark to WE tested were 100% pine bark, 1:3, 1:1, 3:1, and 100% WE by volume. Fertilizer treatments included: 100% of the recommended rate of controlled release fertilizer (CRF), 50% CRF plus 50% liquid fertilizer (LF) and 100% LF. Plant heights, widths, and visual quality ratings were obtained monthly throughout the 16-week experiment. Leaf, shoot and root dry weights were determined at harvest. Nitrogen content of roots, shoots, and substrates were determined at planting and harvest, while NO3 and NH4 content of leachate was determined at each irrigation. All substrates were analyzed at planting and harvest for pH, soluble salts, exchangeable cations, and CEC. Changes in volume, bulk density, porosity, and air space were also measured. Plant size and quality varied significantly between substrate mixes. Mortality was significantly higher in mixes containing 75% and 100% WE. Changes in volume, bulk density, and percent air space were also significant and inversely related to WE concentration.

Free access

Arleen Godoy and Janet C. Cole

Commercially propagated `Halward's Silver' spirea (Spiraea nipponica Maxim.) bareroot cuttings and cuttings with substrate around the roots (plugs) were transplanted into 3.8-L containers and fertilized with various P fertilizers to determine the effect of fertilizer source on P leaching and plant growth. The following fertilizer treatments were applied: 1) 100% of the recommended rate of P from controlled-release fertilizer (CRF), consisting of 22N-2.6P-10K; 2) 100% of P from triple superphosphate (TSP, 0N-20P-0K) with N and K provided by 22N-0P-10K CRF; and 3) 50% of P from CRF, consisting of 22N-1.3P-10K, plus 50% of P from TSP (CRF/TSP). The most P leached from cuttings transplanted as plugs or bareroot and fertilized with TSP, while the least P leached from cuttings transplanted as plugs and fertilized with CRF or CRF/TSP. Plants fertilized with CRF/TSP generally had larger root dry weights than did plants fertilized with CRF or TSP. Plants fertilized with CRF had the smallest stem dry weights. Shoot-to-root (S/R) ratio was largest in plants transplanted as plugs in substrate amended with TSP, but cuttings transplanted bareroot into CRF-amended substrate had the highest S/R ratio and the lowest stem P concentration. Incorporation of CRF/TSP into the container substrate can reduce P leaching compared with incorporation of TSP, and can increase root and stem dry weights of plants transplanted as plugs compared with incorporation of CRF.

Free access

Paula Craig and Janet C. Cole

Wet Earth (WE) is a recycled paper product that may substitute for peat moss as a growth substrate. WE is available at various pH levels and may be formulated using: 1) paper production byproducts (WES), or 2) recycled corrugated cardboard (WEC). Use of WE by commercial growers would reduce demand for both landfill space and for slowly renewable resources such as peat and pine bark. Experiment objectives included: analyzing plant performance of azaleas (Rhododendron obtusum `Hino Crimson') in WE-based growth substrates at pH 3.4 and pH 6.6 and in peat-based growth substrates (Trial pH), 2) analyzing plant performance of WES, WEC, and peat moss-based growth substrates (Trial SC), and 3) determining changes, if any, in substrate physical properties from planting to harvest. Shadehouse experiments were conducted in summer of 1996. Ratios of pine bark to WE tested were 100% pine bark, 1:3, 1:1, 3: l, and 100% WE by volume. Plant heights, widths, and visual quality ratings were obtained monthly throughout the 16-week experiment. Leaf, shoot, and root dry weights and leaf nitrogen concentration were determined at harvest. Changes in volume, bulk density, porosity, and air space were also measured. Plants performed poorly in WES, pH 3.4, with mortality exceeding 90%. Peat and WEC yielded similar (and best) results. Optimum plant performance for all substrates occurred in 1: 3 and 1: 1 (WE: pine bark) mixes. At concentrations over 50%, increases in bulk density and reductions in volume and percent air space in WE substrates were severe enough to negatively impact root growth and plant quality.

Full access

Janet C. Cole and Lee Newell

Five container substrates—3 pine bark (PB) : 1 peat (PT) : 1 sand (SD), 3 PB : 1 recycled paper (RP) : 1 SD, 2 PB : 2 RP : 1 SD, 3 vermiculite (VM) : 1 RP : 1 SD, and 2VM : 2 RP : 1 SD—were used to grow rose-of-sharon (Hibiscus syracus L. `Double Purple') and forsythia (Forsythia ×intermedia Zab. `Lynwood Gold') for 4.5 months. The control substrate (3 PB:1 PT:1 SD) had higher concentrations of NH4 * in leachate than other substrates at each of four sample times during the growing season except 4 Aug. Leaf number and leaf area per plant and height of rose-of-sharon were greater and the leaf area per leaf was smaller in all substrates containing recycled paper than in substrates without recycled paper. Forsythia plants had greater stem and root dry weights and were taller in substrata without recycled paper than plants in substrates with recycled paper. Processed recycled paper is a possible component for container nursery plant production, but further testing on a large number of species is needed before widespread implementation.

Free access

Michael A. Schnelle and Janet C. Cole

A nursery certification manual was originally designed to provide initial and/or continuing education to nursery employees. Industry leaders wrote a manual and corresponding examination to initiate a pilot program. This manual has been revised by Oklahoma State University faculty in cooperation with the Oklahoma State Nurserymen's Association. The revised manual covers basic plant science, ornamental and related garden center plant materials, growth and cultural management concepts, basic business guidelines and current laws and regulations governing the nursery industry. After studying the 20 chapter manual, a rigorous examination is administered. Over 100 nursery workers have been certified to date. Employers have reported increased efficiency from these certified workers. Enhanced public confidence is another advantage to the Oklahoma Certified Nurseryman's Program. This program is likely to be adopted by most retail nurseries in the state.

Free access

Mary C. Koelsch and Janet C. Cole

Vinca minor production in Oklahoma nurseries has declined in recent years due to foliar diseases. A study was conducted to determine whether several labeled and experimental fungicides control these foliar diseases in Vinca minor `Bowles'. This study was conducted outdoors under unusually mild and humid conditions, which were conducive factors for disease symptoms to occur throughout the season. Plants were sprayed at weekly intervals with the fungicides propiconazole (0.95 ml/liter), thiophanate methyl (1.58 ml/liter), thiophanate methyl/mancozeb (1.79 g/liter), triforine (3.95 ml/liter), CC 17461 (3.95 ml/liter), CGA 173506 (0.47/liter), or SAN 619 (0.79 ml/liter). Thiophanate methyl/mancozeb was the most effective of all chemicals at decreasing foliar dieback; however, no chemical completely controlled the disease symptoms throughout the season. Dry weights of plants treated with thiophanate methyl/mancozeb were greater at the end of the season than those of plants receiving the other fungicidal treatments.