Search Results

You are looking at 1 - 10 of 26 items for

  • Author or Editor: James W. Olmstead x
Clear All Modify Search

Sclerified stone cells with a thick and lignified secondary cell wall are known to vary in number among cultivars of northern highbush blueberry (Vaccinium corymbosum) and rabbiteye blueberry (Vaccinium virgatum), and may contribute to fruit texture. Variation in cell size can also contribute to differences in fruit firmness. Fruit from nine southern highbush blueberry [SHB (V. corymbosum interspecific hybrids)] cultivars determined by sensory and instrumental analysis to vary in fruit texture were harvested at mature green and ripe blue developmental stages. Paraffin embedded 12-μm sections were stained with Safranin O and Aniline Blue and microstructure was examined by light microscopy. Stone cells within ≈1.2 mm of the epidermis were counted and cell area was measured in the epidermal layer and three layers beneath the epidermis of the fruit. There was a significant difference in cell area among genotypes and cell layers for mature green fruit and among texture types, genotypes, and cell layers for ripe blue fruit. The average number of stone cells in a single berry ranged from zero to 95 among cultivars. Significant differences in the number of stone cells just below the epidermal layer did not correspond to standard or crisp fruit texture.

Free access

In recent years, world blueberry (Vaccinium sp.) production has been split evenly between processing and fresh fruit markets. Machine harvest of highbush blueberry {northern highbush blueberry [NHB (V. corymbosum)], southern highbush blueberry [SHB (V. corymbosum interspecific hybrids)], and rabbiteye blueberry [RE (V. virgatum)]} typically has been used to obtain large volumes of fruit destined for processing. Because of financial and labor concerns, growers are interested in using machine harvesting for fruit destined to be fresh marketed. Bush architecture, harvest timing, loose fruit clusters, easy detachment of mature berries compared with immature berries, no stem retention, small stem scar, a persistent wax layer, and firm fruit are breeding goals to develop cultivars amenable to machine harvest. Progress in selecting for these traits has been made in existing highbush blueberry breeding programs, but will likely intensify as the need for cultivars suitable for machine harvest for the fresh market increases.

Full access

Most sweet cherry (Prunus avium L.) cultivars grown commercially in the United States are susceptible to powdery mildew, caused by the fungus Podosphaera clandestina (Wall.:Fr.) Lev. Recently, hybrid populations segregating for resistance to powdery mildew were developed by crossing a mildew-resistant sweet cherry selection, PMR-1, with the susceptible cultivars Bing, Rainier, and Van. Although segregation within these populations indicated a single gene was responsible for the powdery mildew resistance conferred by PMR-1, the gene action could not be determined. Therefore, a reciprocal cross between `Bing' and `Van' was made to determine the allelic state of the susceptible parents used previously. All progeny (n = 286) from this cross were susceptible to powdery mildew. This information, combined with results from previous segregation data, indicate the powdery mildew resistance gene is inherited in a dominant manner and is present in PMR-1 in the heterozygous allelic state. We have named this gene Pmr1. Furthermore, in combination with known pedigree information, we have been able to predict the susceptibility of more than 60 additional commercial and recently released sweet cherry cultivars.

Free access

Cross-pollination has been associated with improved fruit set, weight, and shortened time to ripening in southern highbush blueberry [SHB (Vaccinium corymbosum interspecific hybrids)]. Because of this, growers commonly plant two or more cultivars in small blocks to facilitate cross-pollination. However, many SHB cultivars may vary in the degree of improvement in each parameter after cross-pollination. Understanding the impacts of cross-pollination on a particular cultivar is crucial to forming planting recommendations, particularly as growers begin to transition to fields designed for machine harvest where large solid blocks would increase the harvest efficiency. The objective of this study was to examine the effects of cross- and self-pollination among 13 commonly planted or newly released SHB cultivars. Cross-pollination typically improved fruit set, fruit weight, and seed number while decreasing the average days to harvest. Cross-pollinated fruit always weighed more than self-pollinated fruit from the same cultivar, which was highly correlated to seed number per fruit. Although there was variation for each trait, interplanting with another unrelated cultivar sharing a similar bloom time remains the best recommendation to ensure early, high yield among these SHB cultivars.

Full access

To determine how the dormancy-breaking agent hydrogen cyanamide (HC) advances budbreak in peach (Prunus persica), this study compared the transcriptome of buds of low-chill ‘TropicBeauty’ peach trees treated with 1% (v/v) HC and that of nontreated trees at 3 and 7 days after treatment (DAT), respectively, using an RNA sequencing analysis. The peak of total budbreak occurred 6 weeks earlier in the HC-treated trees (at 32 DAT) than the nontreated trees (at 74 DAT). There were 1312 and 1095 differentially expressed genes (DEGs) at 3 and 7 DAT, respectively. At 3 DAT, DEGs related to oxidative stress, including the response to hypoxia, lipid oxidation, and reactive oxygen species (ROS) metabolic process, were upregulated in HC-treated buds. Additionally, DEGs encoding enzymes for ROS scavenging and the pentose phosphate pathway were upregulated at 3 DAT but they were not differently expressed at 7 DAT, indicating a temporary demand for defense mechanisms against HC-triggered oxidative stress. Upregulation of DEGs for cell division and development at 7 DAT, which were downregulated at 3 DAT, suggests that cell activity was initially suppressed but was enhanced within 7 DAT. At 7 DAT, DEGs related to cell wall degradation and modification were upregulated, which was possibly responsible for the burst of buds. The results of this study strongly suggest that HC induces transient oxidative stress shortly after application, leading to the release of bud dormancy and, subsequently, causing an increase in cell activity and cell wall loosening, thereby accelerating budbreak in peach.

Free access

Because of financial and labor concerns, growers are interested in using machine harvesting for fruit destined to be fresh marketed. Machine harvest of highbush blueberry (Vaccinium corymbosum) has typically been used to obtain large volumes of fruit destined for processing. Bush architecture, easy detachment of mature berries compared with immature berries, loose fruit clusters, small stem scar, firm fruit, and a concentrated ripening period are breeding goals to develop cultivars amenable to machine harvest. In the University of Florida (UF) southern highbush blueberry [SHB (Vaccinium corymbosum hybrids)] breeding program, sparkleberry (Vaccinium arboreum) has been used in wide crosses in an attempt to introgress traits that may be valuable for machine harvesting, namely upright growth habit with a narrow crown and long flower and fruit pedicels creating loose fruit clusters. Two eras of sparkleberry hybridization experiments have occurred since the early 1980s. The first era used darrow’s evergreen blueberry (Vaccinium darrowii) as a bridge between sparkleberry and tetraploid SHB, with the recently released cultivar FL 01-173 (sold under the trademarked name Meadowlark) as an example of the end product. The second era has used chromosome doubling to develop polyploid sparkleberry selections that were directly crossed with tetraploid SHB. After 1 year of evaluation, a SHB × (SHB × sparkleberry) population developed for linkage and quantitative trait locus mapping showed abundant variation for length:width ratio of the plant, but similarity to the highbush phenotype for peduncle and pedicel length of the fruit. These first evaluations indicate evidence of introgression and provide an initial step toward improved cultivars for mechanical harvesting.

Full access

Northern highbush (NH) blueberry (Vaccinium corymbosum) and southern highbush (SH) blueberry (V. corymbosum hybrids) have fruit that vary in firmness. The SH fruit is mostly hand harvested for the fresh market. Hand harvesting is labor-intensive requiring more than 500 hours/acre. Rabbiteye blueberry (V. virgatum) tends to have firmer fruit skin than that of NH blueberry and has been mostly machine harvested for the processing industry. Sparkleberry (V. arboreum) has very firm fruit. With the challenges of labor availability, efforts are under way to produce more marketable fruit using machine harvesting. This could require changing the design of harvesting machine and plant architecture, and the development of cultivars with fruit that will bruise less after impact with hard surfaces of machines. The objectives of this study were to determine the fruit quality of machine-harvested SH blueberry, analyze the effect of drop height and padding the contact surface on fruit quality, investigate the effect of crown restriction on ground loss, and determine the effect of plant size on machine harvestability. The fruit of ‘Farthing’, ‘Scintilla’, ‘Sweetcrisp’, and several selections were either hand harvested or machine harvested and assessed during postharvest storage for bruise damage and softening. Machine harvesting contributed to bruise damage in the fruit and softening in storage. The fruit of firm-textured SH blueberry (‘Farthing’, ‘Sweetcrisp’, and selection FL 05-528) was firmer than that of ‘Scintilla’ after 1 week in cold storage. Fruit drop tests from a height of 20 and 40 inches on a plastic surface showed that ‘Scintilla’ was more susceptible to bruising than that of firm-textured ‘Farthing’ and ‘Sweetcrisp’. When the contact surface was cushioned with a foam sheet, bruise incidence was significantly reduced in all SH blueberry used in the study. Also, the fruit dropped 40 inches developed more bruise damage than those dropped 20 inches. Ground loss during machine harvesting was reduced from 24% to 17% by modifying the rabbiteye blueberry plant architecture. Further modifications to harvesting machines and plant architecture are necessary to improve the quality of machine-harvested SH and rabbiteye blueberry fruit and the overall efficiency of blueberry (Vaccinium species and hybrids) harvesting machines.

Full access

Understanding the genetic control of fruit size in sweet cherry (Prunus avium L.) is critical for maximizing fruit size and profitable fresh market production. In cherry, coordinated cycles of cell division and expansion of the carpel result in a fleshy mesocarp that adheres to a stony endocarp. How these structural changes are influenced by differing genetics and environments to result in differing fruit sizes is not known. Thus, the authors measured mesocarp cell length and cell number as components of fruit size. To determine the relative genotypic contribution, five sweet cherry cultivars ranging from ≈1 to 13 g fresh weight were evaluated. To determine the relative environmental contribution to fruit size, different-size fruit within the same genotype and from the same genotype grown in different environments were evaluated. Mesocarp cell number was the major contributor to the differences in fruit equatorial diameter among the five sweet cherry cultivars. The cultivars fell into three significantly different cell number classes: ≈28 cells, ≈45 cells, and ≈78 cells per radial mesocarp section. Furthermore, mesocarp cell number was remarkably stable and virtually unaffected by the environment as neither growing location nor physiological factors that reduced final fruit size significantly altered the cell numbers. Cell length was also significantly different among the cultivars, but failed to contribute to the overall difference in fruit size. Cell length was significantly influenced by the environment, indicating that cultural practices that maximize mesocarp cell size should be used to achieve a cultivar's fruit size potential.

Free access

A detached leaf disk assay for screening sweet cherry (Prunus avium L.) genotypes for susceptibility to powdery mildew (PM) [Podosphaera clandestina (Wallr.:Fr.) Lev.] was developed by evaluating the effects of photoperiod (24 hours light, 0 hours light, 14 hours light/10 hours dark), substrate nutrient content (sterile distilled water, 1% sucrose), leaf age (old, young, emergent), and leaf explant size (intact leaf, 30 mm, 20 mm) on PM growth on leaves from the susceptible cultivar Bing. The only parameter described that had a significant (P ≤ 0.001) effect on PM growth was leaf age. Old leaves, designated as the third fully expanded leaf from the basal end of current-year's shoot growth, were never infected with PM under controlled inoculations. In the absence of significant differences between treatments, those parameters with the highest treatment means were selected for subsequent evaluation. To test the leaf disk assay, 14 sweet cherry cultivars were screened in two experiments, and rated according to level of PM susceptibility. Rank sum comparison of results from cultivars used for leaf disk screening agreed with earlier field rankings of the same cultivars. The developed leaf disk assay greatly reduced the space required to screen sweet cherry cultivars, and was a repeatable and objective predictor of field resistance that may be useful for screening germplasm or breeding populations.

Free access

Most sweet cherry (Prunus avium L.) cultivars grown commercially in the Pacific Northwest U.S. are susceptible to powdery mildew caused by the fungus Podosphaera clandestina (Wall.:Fr.) Lev. The disease is prevalent in the irrigated arid region east of the Cascade Mountains in Washington State. Little is known about genetic resistance to powdery mildew in sweet cherry, although a selection (`PMR-1') was identified at the Washington State Unive. Irrigated Agriculture Research and Extension Center that exhibits apparent foliar immunity to the disease. The objective of this research was to characterize the inheritance of powdery mildew resistance from `PMR-1'. Reciprocal crosses between `PMR-1' and three high-quality, widely-grown susceptible cultivars (`Bing', `Rainier', and ëVaní) were made to generate segregating progenies for determining the mode of inheritance of `PMR-1' resistance. Progenies were screened for susceptibility to powdery mildew colonization using a laboratory leaf disk assay. Assay results were verified by natural spread of powdery mildew among the progeny seedlings in a greenhouse and later by placement among infected trees in a cherry orchard. Progenies from these crosses were not significantly different (P > 0.05) when tested for a 1:1 resistant to susceptible segregation ratio, indicating that `PMR-1' resistance is conferred by a single gene, which we propose to designate as PMR-1.

Free access