Search Results

You are looking at 1 - 10 of 25 items for

  • Author or Editor: James W. Olmstead x
Clear All Modify Search
Free access

Kendra M. Blaker and James W. Olmstead

Sclerified stone cells with a thick and lignified secondary cell wall are known to vary in number among cultivars of northern highbush blueberry (Vaccinium corymbosum) and rabbiteye blueberry (Vaccinium virgatum), and may contribute to fruit texture. Variation in cell size can also contribute to differences in fruit firmness. Fruit from nine southern highbush blueberry [SHB (V. corymbosum interspecific hybrids)] cultivars determined by sensory and instrumental analysis to vary in fruit texture were harvested at mature green and ripe blue developmental stages. Paraffin embedded 12-μm sections were stained with Safranin O and Aniline Blue and microstructure was examined by light microscopy. Stone cells within ≈1.2 mm of the epidermis were counted and cell area was measured in the epidermal layer and three layers beneath the epidermis of the fruit. There was a significant difference in cell area among genotypes and cell layers for mature green fruit and among texture types, genotypes, and cell layers for ripe blue fruit. The average number of stone cells in a single berry ranged from zero to 95 among cultivars. Significant differences in the number of stone cells just below the epidermal layer did not correspond to standard or crisp fruit texture.

Full access

James W. Olmstead and Chad E. Finn

In recent years, world blueberry (Vaccinium sp.) production has been split evenly between processing and fresh fruit markets. Machine harvest of highbush blueberry {northern highbush blueberry [NHB (V. corymbosum)], southern highbush blueberry [SHB (V. corymbosum interspecific hybrids)], and rabbiteye blueberry [RE (V. virgatum)]} typically has been used to obtain large volumes of fruit destined for processing. Because of financial and labor concerns, growers are interested in using machine harvesting for fruit destined to be fresh marketed. Bush architecture, harvest timing, loose fruit clusters, easy detachment of mature berries compared with immature berries, no stem retention, small stem scar, a persistent wax layer, and firm fruit are breeding goals to develop cultivars amenable to machine harvest. Progress in selecting for these traits has been made in existing highbush blueberry breeding programs, but will likely intensify as the need for cultivars suitable for machine harvest for the fresh market increases.

Free access

James W. Olmstead and Gregory A. Lang

Most sweet cherry (Prunus avium L.) cultivars grown commercially in the United States are susceptible to powdery mildew, caused by the fungus Podosphaera clandestina (Wall.:Fr.) Lev. Recently, hybrid populations segregating for resistance to powdery mildew were developed by crossing a mildew-resistant sweet cherry selection, PMR-1, with the susceptible cultivars Bing, Rainier, and Van. Although segregation within these populations indicated a single gene was responsible for the powdery mildew resistance conferred by PMR-1, the gene action could not be determined. Therefore, a reciprocal cross between `Bing' and `Van' was made to determine the allelic state of the susceptible parents used previously. All progeny (n = 286) from this cross were susceptible to powdery mildew. This information, combined with results from previous segregation data, indicate the powdery mildew resistance gene is inherited in a dominant manner and is present in PMR-1 in the heterozygous allelic state. We have named this gene Pmr1. Furthermore, in combination with known pedigree information, we have been able to predict the susceptibility of more than 60 additional commercial and recently released sweet cherry cultivars.

Full access

Sarah K. Taber and James W. Olmstead

Cross-pollination has been associated with improved fruit set, weight, and shortened time to ripening in southern highbush blueberry [SHB (Vaccinium corymbosum interspecific hybrids)]. Because of this, growers commonly plant two or more cultivars in small blocks to facilitate cross-pollination. However, many SHB cultivars may vary in the degree of improvement in each parameter after cross-pollination. Understanding the impacts of cross-pollination on a particular cultivar is crucial to forming planting recommendations, particularly as growers begin to transition to fields designed for machine harvest where large solid blocks would increase the harvest efficiency. The objective of this study was to examine the effects of cross- and self-pollination among 13 commonly planted or newly released SHB cultivars. Cross-pollination typically improved fruit set, fruit weight, and seed number while decreasing the average days to harvest. Cross-pollinated fruit always weighed more than self-pollinated fruit from the same cultivar, which was highly correlated to seed number per fruit. Although there was variation for each trait, interplanting with another unrelated cultivar sharing a similar bloom time remains the best recommendation to ensure early, high yield among these SHB cultivars.

Free access

Gerardo H. Nunez, James W. Olmstead and Rebecca L. Darnell

Vaccinium arboreum (VA) is a wild blueberry species that exhibits wider soil pH tolerance and greater ability for iron and nitrate uptake than cultivated Vaccinium species, including southern highbush blueberry (SHB, V. corymbosum interspecific hybrids). The ability of VA and SHB to respond to iron deficiency by rhizosphere acidification was investigated. Rooted cuttings of the VA genotype FL09-502 and SHB ‘Emerald’ were transplanted to a hydroponic system filled with complete nutrient solution. After 14 days of acclimation at 45 µm iron, plants were transferred to unbuffered nutrient solutions containing 90 or 10 µm iron. ‘Emerald’ and FL09-502 plants grown in 10 µm iron exhibited less iron uptake and lower chlorophyll, total iron, and active iron contents than plants grown in 90 µm iron. Generally, there were no species-level differences in iron or nitrate uptake. Neither FL09-502 nor ‘Emerald’ acidified the rhizosphere in either the nutrient solution or in a gel-based assay, regardless of external iron concentration. A screen of 18 additional genotypes of VA and SHB confirmed that this response is absent in these taxa. Thus, rhizosphere acidification is not part of the iron deficiency response of SHB and VA. In addition, the ability to acidify the soil is not likely to be responsible for the wider soil pH tolerance of VA.

Free access

James W. Olmstead, Gregory A. Lang and Gary G. Grove

Most sweet cherry (Prunus avium L.) cultivars grown commercially in the Pacific Northwestern states of the United States are susceptible to powdery mildew, caused by the fungus Podosphaera clandestina (Wall.:Fr.) Lev. The disease is prevalent in the irrigated arid region east of the Cascade Mountains in Washington State. Little is known about genetic resistance to powdery mildew in sweet cherry, although a selection (PMR-1) was identified at Washington State Univ.'s Irrigated Agriculture Research and Extension Center that exhibits apparent foliar immunity to the disease. The objective of this research was to determine the inheritance of powdery mildew resistance from PMR-1. Reciprocal crosses were made between PMR-1 and three high-quality, widely-grown susceptible cultivars (`Bing', `Rainier', and `Van'). Resultant progenies were screened for reaction to powdery mildew colonization using a laboratory leaf disk assay. Assay results were verified by natural spread of powdery mildew among the progeny in a greenhouse and later by placing them among infected trees in a cherry orchard. Segregation within the progenies for powdery mildew reaction fit a 1 resistant: 1 susceptible segregation ratio (P ≤ 0.05), indicating that resistance to powdery mildew derived from PMR-1 was conferred by a single gene.

Free access

James W. Olmstead, Gregory A. Lang and Gary G. Grove

A detached leaf disk assay for screening sweet cherry (Prunus avium L.) genotypes for susceptibility to powdery mildew (PM) [Podosphaera clandestina (Wallr.:Fr.) Lev.] was developed by evaluating the effects of photoperiod (24 hours light, 0 hours light, 14 hours light/10 hours dark), substrate nutrient content (sterile distilled water, 1% sucrose), leaf age (old, young, emergent), and leaf explant size (intact leaf, 30 mm, 20 mm) on PM growth on leaves from the susceptible cultivar Bing. The only parameter described that had a significant (P ≤ 0.001) effect on PM growth was leaf age. Old leaves, designated as the third fully expanded leaf from the basal end of current-year's shoot growth, were never infected with PM under controlled inoculations. In the absence of significant differences between treatments, those parameters with the highest treatment means were selected for subsequent evaluation. To test the leaf disk assay, 14 sweet cherry cultivars were screened in two experiments, and rated according to level of PM susceptibility. Rank sum comparison of results from cultivars used for leaf disk screening agreed with earlier field rankings of the same cultivars. The developed leaf disk assay greatly reduced the space required to screen sweet cherry cultivars, and was a repeatable and objective predictor of field resistance that may be useful for screening germplasm or breeding populations.

Free access

James W. Olmstead, Gregory A. Lang and Gary G. Grove

Most sweet cherry (Prunus avium L.) cultivars grown commercially in the Pacific Northwest U.S. are susceptible to powdery mildew caused by the fungus Podosphaera clandestina (Wall.:Fr.) Lev. The disease is prevalent in the irrigated arid region east of the Cascade Mountains in Washington State. Little is known about genetic resistance to powdery mildew in sweet cherry, although a selection (`PMR-1') was identified at the Washington State Unive. Irrigated Agriculture Research and Extension Center that exhibits apparent foliar immunity to the disease. The objective of this research was to characterize the inheritance of powdery mildew resistance from `PMR-1'. Reciprocal crosses between `PMR-1' and three high-quality, widely-grown susceptible cultivars (`Bing', `Rainier', and ëVaní) were made to generate segregating progenies for determining the mode of inheritance of `PMR-1' resistance. Progenies were screened for susceptibility to powdery mildew colonization using a laboratory leaf disk assay. Assay results were verified by natural spread of powdery mildew among the progeny seedlings in a greenhouse and later by placement among infected trees in a cherry orchard. Progenies from these crosses were not significantly different (P > 0.05) when tested for a 1:1 resistant to susceptible segregation ratio, indicating that `PMR-1' resistance is conferred by a single gene, which we propose to designate as PMR-1.

Free access

James W. Olmstead, Gregory A. Lang and Gary G. Grove

A personal computer-based method was compared with standard visual assessment for quantifying colonization of sweet cherry (Prunus avium L.) leaves by powdery mildew (PM) caused by Podosphaera clandestina (Wallr.:Fr.) Lev. Leaf disks from 14 cultivars were rated for PM severity (percentage of leaf area colonized) by three methods: 1) visual assessment; 2) digital image analysis; and 3) digital image analysis after painting PM colonies on the leaf disk. The third technique, in which PM colonies on each leaf disk were observed using a dissecting microscope and subsequently covered with white enamel paint, provided a standard for comparison of the first two methods. A digital image file for each leaf disk was created using a digital flatbed scanner. Image analysis was performed with a commercially available software package, which did not adequately detect slight differences in color between PM and sweet cherry leaf tissue. Consequently, two replicated experiments revealed a low correlation between PM image analysis and painted PM image analysis (r2 = 0.66 and 0.46, P ≤ 0.0001), whereas visual assessment was highly correlated with painted PM image analysis (r2 = 0.88 and 0.95, P ≤ 0.0001). Rank orders of the 14 cultivars differed significantly (P ≤ 0.05) when PM image analysis and painted PM image analysis were compared; however, rankings by visual assessment were not significantly different (P > 0.05) from those by painted PM image analysis. Thus, standard visual assessment is an accurate method for estimating disease severity in a leaf disk resistance assay for sweet cherry PM.

Full access

James W. Olmstead, Hilda Patricia Rodríguez Armenta and Paul M. Lyrene

Because of financial and labor concerns, growers are interested in using machine harvesting for fruit destined to be fresh marketed. Machine harvest of highbush blueberry (Vaccinium corymbosum) has typically been used to obtain large volumes of fruit destined for processing. Bush architecture, easy detachment of mature berries compared with immature berries, loose fruit clusters, small stem scar, firm fruit, and a concentrated ripening period are breeding goals to develop cultivars amenable to machine harvest. In the University of Florida (UF) southern highbush blueberry [SHB (Vaccinium corymbosum hybrids)] breeding program, sparkleberry (Vaccinium arboreum) has been used in wide crosses in an attempt to introgress traits that may be valuable for machine harvesting, namely upright growth habit with a narrow crown and long flower and fruit pedicels creating loose fruit clusters. Two eras of sparkleberry hybridization experiments have occurred since the early 1980s. The first era used darrow’s evergreen blueberry (Vaccinium darrowii) as a bridge between sparkleberry and tetraploid SHB, with the recently released cultivar FL 01-173 (sold under the trademarked name Meadowlark) as an example of the end product. The second era has used chromosome doubling to develop polyploid sparkleberry selections that were directly crossed with tetraploid SHB. After 1 year of evaluation, a SHB × (SHB × sparkleberry) population developed for linkage and quantitative trait locus mapping showed abundant variation for length:width ratio of the plant, but similarity to the highbush phenotype for peduncle and pedicel length of the fruit. These first evaluations indicate evidence of introgression and provide an initial step toward improved cultivars for mechanical harvesting.