Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: James W. Moyer x
Clear All Modify Search

Fingerprinting using molecular markers is a highly effective method of cultivar identification that is a powerful aid to traditional methods based on morphology. Amplified fragment length polymorphism (AFLP) is a robust and reliable method for generating molecular markers that has been used to evaluate many crops for a variety of applications. In this study, AFLP was used to develop and validate robust genetic fingerprints for poinsettia (Euphorbia pulcherrima Willd. ex Klotzch) cultivars. Polymorphism selection was completed to facilitate the identification of useful polymorphisms and minimize future fingerprinting costs and time. Poinsettia is a highly variable crop subject to genetic drift and variable cultivars. Validation of polymorphisms to remove those associated with intracultivar variation improved the reliability of the fingerprinting. The result was a poinsettia AFLP database that defines the genetic fingerprints of 104 cultivars. Cluster analysis illustrated differentiation of most poinsettia cultivars tested. Selection of a subset of AFLP polymorphisms resulted in clustering of cultivars according to known origin and breeding program. This method has applications not only for cultivar identification for cultivar protection, and maintenance of cultivar uniformity, but also has the potential application of developing markers for important traits.

Free access

An efficient, high-frequency regeneration and Agrobacterium-mediated transformation system was developed allowing the genetic engineering of three chrysanthemum (Dendranthema grandiflora Tzvelev) cultivars: the formerly recalcitrant and economically important cut-flower mum `Polaris' and two potted mums, `Hekla' and `Iridon'. The regeneration protocol used leaf explants on a sequence of media with four hormone regimes. Explants were first cultured on an embryogenesis-type medium containing a high concentration of 2,4-D, which promoted callus formation. Shoot primordia were induced by culture on medium lacking 2,4-D, followed by shoot elongation on a high-cytokinin plus gibberellic acid medium. Finally, elongated shoots were rooted on a low-auxin rooting medium. Transformed plants of the three cultivars were obtained following co-culture of leaf explants with A. tumefaciens strain EHA 105 harboring the plasmid pBI121 containing genes for neomycin phosphotransferase II (NPTII) and β-glucuronidase (GUS). Stable transformation of the three cultivars was verified via GUS assays and Southern analysis.

Free access