Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: James W. Boodley x
Clear All Modify Search

Abstract

How shall we define the term quality? Anyone who has worked with flowers will stress keeping quality: the prolongation of their esthetic qualities to provide the maximum benefit to the user.

Open Access

Abstract

Chrysanthemum morifolium Ramat. cv. Indianapolis White No. 4 plants grown in Hoagland's solution from which B was deleted and withheld for various periods prior to flowering developed a necrotic halo in the floral parts. The B concentration of leaves of plants showing B deficiency symptoms in flowers at harvest, was well within the range considered adequate for chrysanthemums.

Open Access

Abstract

‘Forever Yours’ roses (Rosa Hybrid Tea) were grown in recirculating nutrient solutions at 1.0 and 10.0 meq/liter K in combination with 10.0 meq/liter NO3-N or NH4-N. Low K limited the growth and flower production, regardless of N form. Ammonium-N fertilized plants showed NH4-N toxicity symptoms as interveinal chlorosis of the lower leaflets. An increased K supply reduced NH4-N toxicity symptoms. Concentrations of Ca and Mg were lower, while P was higher, in the tissue of NH4-N fertilized plants, as compared to NO3-N fertilized plants. Total N, alcohol insoluble N, soluble organic N, and NH4-N were higher in the tissue of plants which received NH4-N, as compared to NO3-N, regardless of K level. An increased K supply from 1.0 to 10.0 meq/liter resulted in higher NO3-N in NO3-N fertilized plants and lower NH4-N in NH4-N fertilized plants.

Open Access

Abstract

‘Forever Yours’ roses (Rosa Hybrid Tea) were grown in recirculating nutrient solutions at 0.25, 2.5, 5.0 and 10.0 meq K/liter. Low K supply (0.25 and 2.5 meq/liter) reduced growth, flower production, and length of flowering stems. Leaf K concentration was reduced at the lowest K concentration in solution. Increasing K concentration in solution from 0.25 to 10.0 meq/liter had no antagonistic effect on the accumulation of Ca or Mg in the leaves. Plants which received 0.25 meq K/liter developed K deficiency symptoms after 5 weeks of growth in treatment solutions.

Open Access

Abstract

Changes in dry weights, total N, nitrate N, and reduced N in the aboveground parts of Chrysanthemum × morifolium Ramat. ‘Gt.#4 Indianapolis White’ were determined at intervals from planting of rooted cuttings until inflorescence maturity. Plant dry matter accumulation rate (mg/day) increased in the combined aboveground tissues with each successive harvest, while N accumulation rate (mg N/day) peaked early in the plants’ growth and decreased after the 6th week of growth. Continued dry matter accumulation in the leaves during inflorescence development suggested that photosynthetic capacity was in excess of the inflorescences’ needs. In contrast, a loss of N from the vegetative portions, and primarily the stems plus petioles, indicated that newly absorbed N was inadequate to meet the demands of the developing inflorescence. The partitioning of N between NO3 and reduced N indicated that enzymatic reduction of NO3 did not limit the availability of reduced N during inflorescence development.

Open Access

Abstract

Rooted cuttings of Chrysanthemum × morifolium Ramat. ‘Gt. #4 Indianapolis White’ were grown in a greenhouse in a sand culture and supplied with either 3.75 or 15.0 mm NO 3 . Changes in dry matter, reduced N and NO 3 of the leaves, stems (plus petioles), roots, and inflorescence and in vivo NO 3 reductase activity (NRA) of leaves were determined at various stages of development. A decrease in the NO 3 supply caused a decrease in the accumulation of plant dry matter, reduced N and NO 3 . Plants receiving 3.75 mm NO 3 remobilized a significant amount of reduced N from vegetative tissues during inflorescence development, suggesting that newly absorbed N was inadequate to supply the flower. At both NO 3 fertilization levels, the NO 3 content of the leaves and stems declined during inflorescence development, suggesting an increased dependence on previously accumulated NO 3 for reduction. The highest NRA of the leaves (3.4 μmoles NO2 gFW−1 hr−1) was associated with early vegetative growth. NRA, however, was detectable throughout plant development. Nitrate reductase activity was greater at 15 mM NO 3 than at 3.75 mM NO 3 during vegetative growth and visible bud stages, but not at later stages of growth.

Open Access